hdu 1907 John(取火柴游戏2)

本文探讨了一种两人轮流取火柴的游戏策略,通过定义利他态与利己态来解析不同局面下的最优策略,并给出了实现这些策略的定理与证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:n堆火柴,2人每次从任意一堆中取至少1个,也可以将整堆取玩,取得最后一根火柴的人输


定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则, 为利己态,用S表示。

[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。

[定理2]:T态,取任何一堆的若干根,都将成为S态。

[定理 3]:S态,只要方法正确,必赢。

[定理4]:T态,只要对方法正确,必败。


接着来解决第二个问题。
定义:若一堆中仅有1根火柴,则被称为孤单堆。若大于1根,则称为充裕堆。
定义:T态中,若充裕堆的堆数大于等于2(若充裕堆数为1,则最后异或一定不为0 ,因为高位只有一个1,异或结果一定不为0),则称为完全利他态,用T2表示;若充裕堆的堆数等于0,则称为部分利他态,用T0(说明孤单堆的数目一定是偶数,否则异或结果定不为0,且因为是偶数,后拿的一定会最后取光所有物品,在第二个问题中先拿的是赢家)表示。


孤单堆的根数异或只会影响二进制的最后一位,但充裕堆会影响高位(非最后一位)。一个充裕堆,高位必有一位不为0,则所有根数异或不为0。故不会是T态。

[定理5]:S0态,即仅有奇数个孤单堆,必败。T0态必胜。 

[定理6]:S1态( 一堆充裕堆,x个孤单堆),只要方法正确,必胜。 

证明:
若此时孤单堆堆数为奇数,把充裕堆取完 , 变成S0;

否则有偶数个孤单堆,将充裕堆取得剩一根。这样,就变成奇数个孤单堆即 S0,由对方取。

由定理5 ,必胜。

[定理7]:S2态不可转一次变为T0态。

[定理8]:S2态可一次转变为T2态。 

(若充裕堆>2 (1:充裕堆为偶数,孤单堆为奇数,将一个孤单堆取完),(2:充裕堆为奇数,若孤单堆为偶数,则取完一个充裕堆,若孤单堆为奇数,则取得一个充裕堆剩1个。))

[定理9]:T2态,只能转变为S2态或S1态。( 若充裕堆>2则可转变为S2 ,若充裕堆=2,则可转变为S1)。

[定理10]:S2态,只要方法正确,必胜.

证明:
方法如下: 
      1)  S2态(),就把它变为T2态()。(由定理8) 
      2)  对方只能T2转变成S2态或S1态((定理9)
           若转变为S2,  转向1) 
           若转变为S1(),  这己必胜。(定理5)

定理11]:T2态必输。

综上所述,若是    S2,S1,T0 。 则先下的人必胜。

                  若是   T2,S0 。则先下的人必输。

两题比较:

第一题(全过程): S2 ->T2 ->S2->T2->... ...->T2->S1->T0(偶数个孤单堆)->...->S0->T0 (全0)。

第二题(全过程):S2->T2->S2->T2->  ……  ->T2->S1->S0(技术个孤单堆)->T0->S0->……->S0->T0(全0)

S1态可以转变为S0态(第二题做法),也可以转变为 
T0(第一题做法)。哪一方控制了S1态,他即可以有办法使自己得到最后一根(转变为 
T0),也可以使对方得到最后一根(转变为S0)。 
  所以,抢夺S1是制胜的关键! 
  为此,始终把T2态让给对方,将使对方处于被动状态,他早晚将把状态变为S1.


#include<iostream>
using namespace std;
int main()
{
    int t,n,m,s,num;
    cin>>t;
    while(t--)
    {
        cin>>n;
        num=0;
        s=0;
        for(int i=0;i<n;i++)
        {
            cin>>m;
            if(m>1) num++;
            s^=m;
        }
        if(s)
        {
            if(num>=1)
            cout<<"John"<<endl;
            else
            cout<<"Brother"<<endl;
        }
        else
        {
            if(num>=2)
            cout<<"Brother"<<endl;
            else
             cout<<"John"<<endl;
        }
    }
    return 0;
}


### HDU1565 方格取数 动态规划 解题思路 对于给定的一个 \( n \times n \) 的棋盘,其中每个格子内含有一个非负数值。目标是从这些格子里选取一些数,使得任何两个被选中的数所在的位置没有公共边界(即它们不是上下左右相邻),并且使选出的数之和尽可能大。 #### 构建状态转移方程 为了实现这一目的,可以定义二维数组 `dp` 来存储到达某位置的最大累积值: - 设 `dp[i][j]` 表示当考虑到第 i 行 j 列时能够获得的最大价值。 初始化阶段,设置第一行的数据作为基础情况处理;之后通过遍历整个矩阵来更新每一个可能的状态。具体来说,在计算某个特定单元 `(i, j)` 处的结果之前,应该先考察其上方以及左上角、右上角三个方向上的元素是否已经被访问过,并据此调整当前节点所能达到的最佳得分[^1]。 ```cpp for (int i = 0; i < N; ++i){ for (int j = 0; j < M; ++j){ dp[i][j] = grid[i][j]; // 上面一排的情况 if(i > 0 && !conflict(i,j,i-1,j)) dp[i][j] = max(dp[i][j], dp[i-1][j] + grid[i][j]); // 左斜线方向 if(i > 0 && j > 0 && !conflict(i,j,i-1,j-1)) dp[i][j] = max(dp[i][j], dp[i-1][j-1] + grid[i][j]); // 右斜线方向 if(i > 0 && j+1 < M && !conflict(i,j,i-1,j+1)) dp[i][j] = max(dp[i][j], dp[i-1][j+1] + grid[i][j]); } } ``` 这里需要注意的是冲突检测函数 `conflict()` ,用于判断两格之间是否存在直接连接关系。如果存在,则不允许同时选择这两格内的数字相加到路径之中去。 #### 寻找最优解 最终的答案将是最后一行中所有列的最大值之一,因为这代表了从起点出发直到终点结束可以获得的最大收益。可以通过简单的循环找到这个最大值并返回它作为结果输出。 ```cpp // 找到最后一行的最大值 __int64 result = 0; for(int col = 0; col < M; ++col) { result = max(result, dp[N-1][col]); } cout << "Maximum sum is: " << result << endl; ``` 上述方法利用了动态规划的思想有效地解决了该问题,时间复杂度大约为 O(n*m),空间复杂度同样取决于输入规模大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值