很多时候,我们需要将Hive的查询(select)结果保存起来,方便进一步处理或查看。
在Hive里面提供了不同的方式来保存查询结果,在这里做下总结:
一、保存结果到本地
方法1:调用hive标准输出,将查询结果写到指定的文件中
这个方法最为常见,笔者也经常使用。sql的查询结果将直接保存到/tmp/out.txt中
- $ hive -e "select user, login_timestamp from user_login" > /tmp/out.txt
当然我们也可以查询保存到某个文件file.sql中,按下面的方式执行查询,并保存结果
- $ hive -f file.sql > /tmp/out.txt
下面是file.sql的内容:
- select user, login_timestamp from user_login
- hive -e '<query-string>' executes the query string.
- hive -f <filepath> executes one or more SQL queries from a file.
方法2:使用INSERT OVERWRITE LOCAL DIRECTORY结果到本地
- hive> insert overwrite local directory "/tmp/out/"
- > select user, login_time from user_login;
上面的命令会将select user, login_time from user_login的查询结果保存到/tmp/out/本地目录下。
我们查看一下/tmp/out/目录下的文件,发现命令执行后,多了两个文件:
- $ find /tmp/out/ -type f
- /tmp/out/.000000_0.crc
- /tmp/out/000000_0
这两个文件存放的内容不一样,其中000000_0存放查询的结果,带有crc后缀的存放那个文件的crc32校验。
用vim打开查看下000000_0的内容:
- vim /tmp/out/000000_0
- 1 user_1^A20140701
- 2 user_2^A20140701
- 3 user_2^A20140701
可以看到,导出的查询结果字段之间是用^A(Ctrl+A)作为分割符,行与行之间用\n作为分割。
默认的字段分割符有时候可能不太方便,幸好Hive提供了修改分割符号的方法,我们只要在导出时指定就可以了:
- hive> insert overwrite local directory "/tmp/out/"
- > row format delimited fields terminated by "\t"
- > select user, login_time from user_login;
- $ vim /tmp/out/000000_0
- 1 user_1 20140701
- 2 user_2 20140701
- 3 user_2 20140701
可以看到字段分割符已经变成了tab(人眼看起来更舒服^-^)。
同样,我们也可以指定复杂类型(collection、map)的输出格式
更多关于INSERT OVERWRITE LOCAL DIRECTORY的语法,可以参考HIVE的官方文档《Writing data into the filesystem from queries》。
- Standard syntax:
- INSERT OVERWRITE <span style="color:#ff0000;">[LOCAL] </span>DIRECTORY directory1
- [ROW FORMAT row_format] [STORED AS file_format] (Note: Only available starting with Hive 0.11.0)
- SELECT ... FROM ...
-
- Hive extension (multiple inserts):
- FROM from_statement
- INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1
- [INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2] ...
-
-
- row_format
- : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
- [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
- [NULL DEFINED AS char] (Note: Only available starting with Hive 0.13)
二、保存结果到hdfs
保存查询结果到hdfs很简单,使用INSERT OVERWRITE DIRECTORY就可以完成操作:
- hive> insert overwrite directory "/tmp/out/"
- > row format delimited fields terminated by "\t"
- > select user, login_time from user_login;
需要注意的是,跟保存到本地文件系统的差别是,保存到hdfs时命令不需要指定LOCAL项
更多关于INSERT OVERWRITE DIRECTORY的语法,可以参考HIVE的官方文档《
Writing data into the filesystem from queries》。
三、保存结果到HIVE表
方法1、已经建好结果表,使用INSERT OVERWRITE TABLE以覆盖方式写入结果表
如果结果表已经建好,可以使用INSERT OVERWRITE TABLE将结果写入结果表:
- hive> desc query_result;
- OK
- user string,
- login_time bigint
- hive> insert overwrite table query_result
- > select user, login_time from user_login;
- hive> select * from query_result;
- OK
- user_1 20140701
- user_2 20140701
- user_3 20140701
当然,HIVE也提供了追加方式INSERT TABLE,可以在原有数据后面加上新的查询结果。在上面这个例子基础上,我们再追加一个查询结果:
- hive> insert into table query_result
- > select * from query_result;
- hive> select * from query_result;
- OK
- user_1 20140701
- user_2 20140701
- user_3 20140701
- <span style="color:#ff0000;">user_1 20140701
- user_2 20140701
- user_3 20140701</span>
注意标红的部分,使用INSERT TABLE后,query_result增加了三行数据
更多关于INSERT OVERWRITE TABLE的语法,可以参考HIVE官方文档《Inserting data into Hive Tables from queries》
- Standard syntax:
- INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 FROM from_statement;
- INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;
-
- Hive extension (multiple inserts):
- FROM from_statement
- INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1
- [INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2]
- [INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] ...;
- FROM from_statement
- INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1
- [INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2]
- [INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2] ...;
-
- Hive extension (dynamic partition inserts):
- INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement;
- INSERT INTO TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement;
方法2、如果需要新建一个表,用于存放查询结果,可以使用CREATE TABLE AS SELECT语法
- hive> create table query_result
- > as
- > select user, login_time from user_login;
- hive> select * from query_result;
- OK
- user_1 20140701
- user_2 20140701
- user_3 20140701
更多关于CREATE TABLE AS SELECT的语法,可以参考HIVE官方文档《
Create Table As Select (CTAS)》
- CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name (Note: TEMPORARY available starting with Hive 0.14.0)
- [(col_name data_type [COMMENT col_comment], ...)]
- [COMMENT table_comment]
- [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
- [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
- [SKEWED BY (col_name, col_name, ...) ON ([(col_value, col_value, ...), ...|col_value, col_value, ...])
- [STORED AS DIRECTORIES] (Note: Only available starting with Hive 0.10.0)]
- [
- [ROW FORMAT row_format] [STORED AS file_format]
- | STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)] (Note: Only available starting with Hive 0.6.0)
- ]
- [LOCATION hdfs_path]
- [TBLPROPERTIES (property_name=property_value, ...)] (Note: Only available starting with Hive 0.6.0)
- [AS select_statement] (Note: Only available starting with Hive 0.5.0, and not supported when creating external tables.)
-
- CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
- LIKE existing_table_or_view_name
- [LOCATION hdfs_path]
-
- data_type
- : primitive_type
- | array_type
- | map_type
- | struct_type
- | union_type (Note: Only available starting with Hive 0.7.0)
-
- primitive_type
- : TINYINT
- | SMALLINT
- | INT
- | BIGINT
- | BOOLEAN
- | FLOAT
- | DOUBLE
- | STRING
- | BINARY (Note: Only available starting with Hive 0.8.0)
- | TIMESTAMP (Note: Only available starting with Hive 0.8.0)
- | DECIMAL (Note: Only available starting with Hive 0.11.0)
- | DECIMAL(precision, scale) (Note: Only available starting with Hive 0.13.0)
- | VARCHAR (Note: Only available starting with Hive 0.12.0)
- | CHAR (Note: Only available starting with Hive 0.13.0)
-
- array_type
- : ARRAY < data_type >
-
- map_type
- : MAP < primitive_type, data_type >
-
- struct_type
- : STRUCT < col_name : data_type [COMMENT col_comment], ...>
-
- union_type
- : UNIONTYPE < data_type, data_type, ... > (Note: Only available starting with Hive 0.7.0)
-
- row_format
- : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
- [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
- [NULL DEFINED AS char] (Note: Only available starting with Hive 0.13)
- | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
-
- file_format:
- : SEQUENCEFILE
- | TEXTFILE
- | RCFILE (Note: Only available starting with Hive 0.6.0)
- | ORC (Note: Only available starting with Hive 0.11.0)
- | AVRO (Note: Only available starting with Hive 0.14.0)
- | INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname
四、使用hdfs直接导出表
Hive是构建在hdfs上的,因此,我们可以使用hdfs的命令hadoop dfs -get直接导出表。
首先、我们先找到要导出的表存放到哪个目录下:
- hive> show create table user_login;
- OK
- CREATE TABLE `user_login`(
- `user` string,
- `login_time` bigint)
- ROW FORMAT SERDE
- 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
- STORED AS INPUTFORMAT
- 'org.apache.hadoop.mapred.TextInputFormat'
- OUTPUTFORMAT
- 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
- <span style="color:#ff0000;">LOCATION
- 'file:/user/hive/warehouse/test.db/user_login'</span>
- TBLPROPERTIES (
- 'totalSize'='160',
- 'numRows'='10',
- 'rawDataSize'='150',
- 'COLUMN_STATS_ACCURATE'='true',
- 'numFiles'='1',
- 'transient_lastDdlTime'='1411544983')
- Time taken: 0.174 seconds, Fetched: 18 row(s)
可以看到,user_login表存放到在file:/user/hive/warehouse/test.db/user_login。
接下来,直接利用hadoop dfs -get导出到本地:
- hadoop dfs -get file:/user/hive/warehouse/test.db/user_login /tmp/out/
更多关于hadoop dfs -get命令,可以参考hadoop dfs命令界面文档《File System Shell》
转载地址:http://blog.youkuaiyun.com/zhuce1986/article/details/39586189