SLAM导航机器人零基础实战系列:(三)感知与大脑——4.音响麦克风与摄像头
摘要
在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话。朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人。实现的关键是让机器人能通过传感器感知周围环境,并通过机器人大脑处理并输出反馈和执行动作。本章节涉及到的传感器有激光雷达、IMU、轮式里程计、麦克风、音响、摄像头,和用于处理信息的嵌入式主板。关于传感器的ROS驱动程序开发和在机器人上的使用在后面的章节会展开,本章节重点对机器人传感器和嵌入式主板进行讲解,主要内容:
温馨提示:
本篇文章已经收录在我最新出版的书籍《机器人SLAM导航核心技术与实战》,感兴趣的读者可以购买纸质书籍来进行更加深入和系统性的学习,购买链接如下:
4.音响麦克风与摄像头
要让机器人能跟人进行对话,需要麦克风和音响。其实麦克风就相当于机器人的耳朵,音响就相当于机器人的嘴巴。摄像头作为机器人的眼睛,摄像头可以用来帮助机器人定位或认识环境。
4.1.音响

(图29)音响
如图29,为音响的基本配件。这里需要说明一下,由于后面使用树莓派3作为机器人的大脑,不过树莓派3的自带声卡不好用,驱动容易崩溃,所以这里推荐使用免驱的USB声卡。其实,声卡就是DA转换器,就是将数字音频信号转换为模拟电压信号;音响就是将声卡输出的模拟电压进行放大并通过喇叭播放出来。
4.2.麦克风与摄像头

(图30)麦克风与摄像头
如图30,摄像头上直接集成了麦克风。这里选用的是四麦阵列指向性麦克风,可以对特定方向上的声音拾取,并过滤其他方向上的杂音。这里的摄像头是640x480像素60fps。
4.3.在机器人中使用音响麦克风与摄像头

(图31)麦克风与摄像头
我们只需要在机器人上安装对应的ROS驱动,就可以通过发布和订阅相应的主题来实现对传感器的访问了。如图31,iat语音识别节点用于驱动麦克风,并将麦克风采集的语音转换为文字;问答(QA)和自然语言处理(NLP)节点处理iat语音识别节点发布的文字,并将处理结果发布给tts语音合成节点;tts语音合成节点订阅问答(QA)和自然语言处理(NLP)节点发布的文字,并驱动声卡将文字转换为语音;摄像头ROS驱动将摄像头数据直接发布到相应的话题。这样机器人上的其他节点都可以通过订阅与发布相应的节点来访问麦克风、声卡和摄像头。关于图像、语音、文字等处理的具体应用将在后面详细展开。
后记
如果大家对博文的相关类容感兴趣,或有什么技术疑问,欢迎加QQ技术交流群(117698356)
参考文献
[1] 张虎,机器人SLAM导航核心技术与实战[M]. 机械工业出版社,2022.
购书链接:https://item.jd.com/13041503.html
下载更多资料:www.xiihoo.com
QQ技术讨论群: 117698356
B站视频教程:https://space.bilibili.com/66815220
Github源码:https://github.com/xiihoo/Books_Robot_SLAM_Navigation
Gitee源码(国内访问速度快):https://gitee.com/xiihoo-robot/Books_Robot_SLAM_Navigation


序
前言
编程基础篇
第1章 ROS入门必备知识
1.1 ROS简介 2
1.1.1 ROS的性能特色 2
1.1.2 ROS的发行版本 3
1.1.3 ROS的学习方法 3
1.2 ROS开发环境的搭建 3
1.2.1 ROS的安装 4
1.2.2 ROS文件的组织方式 4
1.2.3 ROS网络通信配置 5
1.2.4 集成开发工具 5
1.3 ROS系统架构 5
1.3.1 从计算图视角理解ROS架构 6
1.3.2 从文件系统视角理解ROS架构 7
1.3.3 从开源社区视角理解ROS架构 8
1.4 ROS调试工具 8
1.4.1 命令行工具 9
1.4.2 可视化工具 9
1.5 ROS节点通信 10
1.5.1 话题通信方式 12
1.5.2 服务通信方式 15
1.5.3 动作通信方式 19
1.6 ROS的其他重要概念 25
1.7 ROS 2.0展望 28
1.8 本章小结 28
第2章 C++编程范式
2.1 C++工程的组织结构 29
2.1.1 C++工程的一般组织结构 29
2.1.2 C++工程在机器人中的组织结构 29
2.2 C++代码的编译方法 30
2.2.1 使用g++编译代码 31
2.2.2 使用make编译代码 32
2.2.3 使用CMake编译代码 32
2.3 C++编程风格指南 33
2.4 本章小结 34
第3章 OpenCV图像处理
3.1 认识图像数据 35
3.1.1 获取图像数据 35
3.1.2 访问图像数据 36
3.2 图像滤波 37
3.2.1 线性滤波 37
3.2.2 非线性滤波 38
3.2.3 形态学滤波 39
3.3 图像变换 40
3.3.1 射影变换 40
3.3.2 霍夫变换 42
3.3.3 边缘检测 42
3.3.4 直方图均衡 43
3.4 图像特征点提取 44
3.4.1 SIFT特征点 44
3.4.2 SURF特征点 50
3.4.3 ORB特征点 52
3.5 本章小结 54
硬件基础篇
第4章 机器人传感器
4.1 惯性测量单元 56
4.1.1 工作原理 56
4.1.2 原始数据采集 60
4.1.3 参数标定 65
4.1.4 数据滤波 73
4.1.5 姿态融合 75
4.2 激光雷达 91
4.2.1 工作原理 92
4.2.2 性能参数 94
4.2.3 数据处理 96
4.3 相机 100
4.3.1 单目相机 101
4.3.2 双目相机 107
4.3.3 RGB-D相机 109
4.4 带编码器的减速电机 111
4.4.1 电机 111
4.4.2 电机驱动电路 112
4.4.3 电机控制主板 113
4.4.4 轮式里程计 117
4.5 本章小结 118
第5章 机器人主机
5.1 X86与ARM主机对比 119
5.2 ARM主机树莓派3B+ 120
5.2.1 安装Ubuntu MATE 18.04 120
5.2.2 安装ROS melodic 122
5.2.3 装机软件与系统设置 122
5.3 ARM主机RK3399 127
5.4 ARM主机Jetson-tx2 128
5.5 分布式架构主机 129
5.5.1 ROS网络通信 130
5.5.2 机器人程序的远程开发 130
5.6 本章小结 131
第6章 机器人底盘
6.1 底盘运动学模型 132
6.1.1 两轮差速模型 132
6.1.2 四轮差速模型 136
6.1.3 阿克曼模型 140
6.1.4 全向模型 144
6.1.5 其他模型 148
6.2 底盘性能指标 148
6.2.1 载重能力 148
6.2.2 动力性能 148
6.2.3 控制精度 150
6.2.4 里程计精度 150
6.3 典型机器人底盘搭建 151
6.3.1 底盘运动学模型选择 152
6.3.2 传感器选择 152
6.3.3 主机选择 153
6.4 本章小结 155
SLAM篇
第7章 SLAM中的数学基础
7.1 SLAM发展简史 158
7.1.1 数据关联、收敛和一致性 160
7.1.2 SLAM的基本理论 161
7.2 SLAM中的概率理论 163
7.2.1 状态估计问题 164
7.2.2 概率运动模型 166
7.2.3 概率观测模型 171
7.2.4 概率图模型 173
7.3 估计理论 182
7.3.1 估计量的性质 182
7.3.2 估计量的构建 183
7.3.3 各估计量对比 190
7.4 基于贝叶斯网络的状态估计 193
7.4.1 贝叶斯估计 194
7.4.2 参数化实现 196
7.4.3 非参数化实现 202
7.5 基于因子图的状态估计 206
7.5.1 非线性最小二乘估计 206
7.5.2 直接求解方法 206
7.5.3 优化方法 208
7.5.4 各优化方法对比 218
7.5.5 常用优化工具 219
7.6 典型SLAM算法 221
7.7 本章小结 221
第8章 激光SLAM系统
8.1 Gmapping算法 223
8.1.1 原理分析 223
8.1.2 源码解读 228
8.1.3 安装与运行 233
8.2 Cartographer算法 240
8.2.1 原理分析 240
8.2.2 源码解读 247
8.2.3 安装与运行 258
8.3 LOAM算法 266
8.3.1 原理分析 266
8.3.2 源码解读 267
8.3.3 安装与运行 270
8.4 本章小结 270
第9章 视觉SLAM系统
9.1 ORB-SLAM2算法 274
9.1.1 原理分析 274
9.1.2 源码解读 310
9.1.3 安装与运行 319
9.1.4 拓展 327
9.2 LSD-SLAM算法 329
9.2.1 原理分析 329
9.2.2 源码解读 334
9.2.3 安装与运行 337
9.3 SVO算法 338
9.3.1 原理分析 338
9.3.2 源码解读 341
9.4 本章小结 341
第10章 其他SLAM系统
10.1 RTABMAP算法 344
10.1.1 原理分析 344
10.1.2 源码解读 351
10.1.3 安装与运行 357
10.2 VINS算法 362
10.2.1 原理分析 364
10.2.2 源码解读 373
10.2.3 安装与运行 376
10.3 机器学习与SLAM 379
10.3.1 机器学习 379
10.3.2 CNN-SLAM算法 411
10.3.3 DeepVO算法 413
10.4 本章小结 414
自主导航篇
第11章 自主导航中的数学基础
11.1 自主导航 418
11.2 环境感知 420
11.2.1 实时定位 420
11.2.2 环境建模 421
11.2.3 语义理解 422
11.3 路径规划 422
11.3.1 常见的路径规划算法 423
11.3.2 带约束的路径规划算法 430
11.3.3 覆盖的路径规划算法 434
11.4 运动控制 435
11.4.1 基于PID的运动控制 437
11.4.2 基于MPC的运动控制 438
11.4.3 基于强化学习的运动控制 441
11.5 强化学习与自主导航 442
11.5.1 强化学习 443
11.5.2 基于强化学习的自主导航 465
11.6 本章小结 467
第12章 典型自主导航系统
12.1 ros-navigation导航系统 470
12.1.1 原理分析 470
12.1.2 源码解读 475
12.1.3 安装与运行 479
12.1.4 路径规划改进 492
12.1.5 环境探索 496
12.2 riskrrt导航系统 498
12.3 autoware导航系统 499
12.4 导航系统面临的一些挑战 500
12.5 本章小结 500
第13章 机器人SLAM导航综合实战
13.1 运行机器人上的传感器 502
13.1.1 运行底盘的ROS驱动 503
13.1.2 运行激光雷达的ROS驱动 503
13.1.3 运行IMU的ROS驱动 504
13.1.4 运行相机的ROS驱动 504
13.1.5 运行底盘的urdf模型 505
13.1.6 传感器一键启动 506
13.2 运行SLAM建图功能 506
13.2.1 运行激光SLAM建图功能 507
13.2.2 运行视觉SLAM建图功能 508
13.2.3 运行激光与视觉联合建图功能 508
13.3 运行自主导航 509
13.4 基于自主导航的应用 510
13.5 本章小结 511
附录A Linux与SLAM性能优化的探讨
附录B 习题
9111

被折叠的 条评论
为什么被折叠?



