矩形分割

该博客讨论了如何在平面上的大矩形中,找到一条平行于y轴的直线x=k,使得小矩形落在直线左侧的面积至少等于右侧,并使左侧总面积尽可能大。输入包括大矩形的坐标和多个小矩形的坐标及尺寸,输出是满足条件的直线x坐标。通过分析和代码实现,博主给出了样例输入和输出,展示了问题的解决过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

平面上有一个大矩形,其左下角坐标(0,0),右上角坐标(R,R)。大矩形内部包含一些小矩形,小矩形都平行于坐标轴且互不重叠。所有矩形的顶点都是整点。要求画一根平行于y轴的直线x=k(k是整数) ,使得这些小矩形落在直线左边的面积必须大于等于落在右边的面积,且两边面积之差最小。并且,要使得大矩形在直线左边的的面积尽可能大。注意:若直线穿过一个小矩形,将会把它切成两个部分,分属左右两侧。

输入

第一行是整数R,表示大矩形的右上角坐标是(R,R) (1 <= R <= 1,000,000)。
接下来的一行是整数N,表示一共有N个小矩形(0 < N <= 10000)。
再接下来有N 行。每行有4个整数,L,T, W 和 H, 表示有一个小矩形的左上角坐标是(L,T),宽度是W,高度是H (0<=L,T <= R, 0 < W,H <= R). 小矩形不会有位于大矩形之外的部分。

输出

输出整数n,表示答案应该是直线 x=n。如果必要的话,x=R也可以是答案。

分析:

1、用数组存储该直线(y=i)左边面积。

代码:

#include <iostream>
const int MAXN=3000001
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值