ASCII码对照表(Matplotlib颜色对照表)

1、简介

1.1 颜色代码

颜色代码是一种用于表示颜色的编码系统,常见的颜色代码包括RGB颜色代码和十六进制颜色代码。RGB颜色代码使用红色、绿色和蓝色的数值来表示一个颜色,例如(255, 0, 0)表示红色。十六进制颜色代码使用六位十六进制数来表示一个颜色,例如#FF0000表示红色。颜色代码主要用于在计算机图形和网页设计中指定颜色。

在这里插入图片描述

2、Matplotlib库简介

2.1 简介

https://matplotlib.org/

Matplotlib:使用 Python 进行可视化

Matplotlib 是一个用于创建静态、动画、 以及 Python 中的交互式可视化。Matplotlib 让事情变得简单 简单和困难的事情都可能。
在这里插入图片描述

2.2 安装

Matplotlib及其依赖项作为MacOS、Windows和Linux发行版的车轮包提供:

python -m pip install -U matplotlib

在这里插入图片描述

2.3 后端

matplotlib可以针对不同的输出,这些功能中的每一个都称为后端;“前端”是面向用户的代码,即绘图代码,而“后端”则在幕后完成了所有繁重的工作来生成数字。有两种后端:用户界面后端(用于pygtk、wxpython、tkinter、qt4或macosx;也称为“交互后端”)和硬拷贝后端以生成图像文件(png、svg、pdf、ps;也称为“非交互后端”)。

Tk (>= 8.3, !=8.6.0或8.6.1):用于基于Tk的后端。
PyQt4 (>4.6)或 PySide (>=1.0.3) [1]: 对于基于Qt4的后端。
PyQt5 或 PySide2: 对于基于Qt5的后端。
PyGObject:用于基于GTK3的后端 [2].
wxPython (>=4[3]: 对于基于wx的后端。
pycairo (>=1.11.0)或 cairocffi (>=0.8):用于GTK3和/或基于cairo的后端。
Tornado:用于WebAgg后端。

默认情况下,Matplotlib应该自动选择一个默认的后端,该后端允许交互式工作和从脚本打印,并输出到屏幕和/或文件,因此至少最初您不需要担心后端。

2.4 入门例子

  • 绘制正弦曲线:
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
# ax.plot([1, 2, 3, 4], [1, 4, 2, 3])
ax.plot(np.linspace(0, 2*np.pi, 100), np.sin(np.linspace(0, 2*np.pi, 100)), color='blue', linestyle='-', linewidth=2, marker='o', markersize=5, markerfacecolor='red', markeredgecolor='black', markeredgewidth=1)

plt.show()

在这里插入图片描述

  • 绘制2d栅格图
import matplotlib.pyplot as plt
import numpy as np

plt.style.use('_mpl-gallery-nogrid')

# make data
X, Y = np.meshgrid(np.linspace(-3, 3, 16), np.linspace(-3, 3, 16))
Z = (1 - X/2 + X**5 + Y**3) * np.exp(-X**2 - Y**2)

# plot
fig, ax = plt.subplots()
ax.imshow(Z, origin='lower')
plt.show()

在这里插入图片描述

3、Matplotlib库颜色

3.1 概述

Matplotlib有许多内置的颜色映射,可通过 matplotlib.cm.get_cmap .
选择一个好的颜色映射的想法是为你的数据集在3D颜色空间中找到一个好的表示。任何给定数据集的最佳颜色映射取决于许多因素,包括:

  • 表示形式或度量数据 ([Ware])
  • 您对数据集的了解( e.g. ,是否存在其他值偏离的临界值?)
  • 如果要绘制的参数有直观的颜色方案
  • 如果该领域有一个标准,观众可能会期待

3.2 颜色图的分类

颜色映射通常根据其功能分为几个类别:

  • 顺序:亮度的变化和颜色的饱和度的增加,通常使用一个单一的色调;应该用来表示有顺序的信息。
  • 偏色:两种不同颜色在中间以不饱和颜色相交时的亮度变化和可能的饱和度变化;当所绘制的信息具有临界中间值时,如地形或当数据偏离零时,应使用偏色。
  • 循环:两种不同颜色的亮度变化,在中间和开始/结束时以不饱和颜色相遇;应用于在端点处环绕的值,如相位角、风向或一天中的时间。
  • 定性:通常是各种颜色;应该用来表示没有顺序或关系的信息。

3.3 颜色格式表示

https://matplotlib.net/stable/api/colors_api.html#module-matplotlib.colors

https://github.com/matplotlib/matplotlib/blob/main/lib/matplotlib/_color_data.py
Matplotlib 识别以下格式来指定颜色:

  • (例如 或)中浮点值的 RGB 或 RGBA 元组。RGBA 是 Red、Green、Blue、Alpha 的缩写;[0, 1](0.1, 0.2, 0.5)(0.1, 0.2, 0.5, 0.3)

  • 十六进制 RGB 或 RGBA 字符串(例如,‘#0F0F0F’或’#0F0F0F0F’);

  • 一个简写的十六进制 RGB 或 RGBA 字符串,相当于复制每个字符得到的十六进制 RGB 或 RGBA 字符串,(例如,‘#abc’等价于’#aabbcc’,或’#abcd’,等价于’#aabbccdd’);

  • 浮点值的字符串表示,包括灰度级(例如,);[0, 1]‘0.5’

  • 单个字母字符串,即其中一个 ,它是蓝色、绿色、红色、青色、洋红色、黄色、黑色和白色阴影的简写符号;{‘b’, ‘g’, ‘r’, ‘c’, ‘m’, ‘y’, ‘k’, ‘w’}

  • X11/CSS4 (“html”) 颜色名称,例如"blue";

  • 来自xkcd 颜色调查的名称,前缀为’xkcd:'(例如,);‘xkcd:sky blue’

  • “Cn”颜色规范,即’C’后跟一个数字,它是默认属性循环的索引(rcParams[“axes.prop_cycle”](默认值:));索引旨在在渲染时发生,如果循环不包括颜色,则默认为黑色。cycler(‘color’, [‘#1f77b4’, ‘#ff7f0e’, ‘#2ca02c’, ‘#d62728’, ‘#9467bd’, ‘#8c564b’, ‘#e377c2’, ‘#7f7f7f’, ‘#bcbd22’, ‘#17becf’])

  • 其中之一是来自“tab10”分类调色板的 Tableau 颜色(这是默认颜色循环);{‘tab:blue’, ‘tab:orange’, ‘tab:green’, ‘tab:red’, ‘tab:purple’, ‘tab:brown’, ‘tab:pink’, ‘tab:gray’, ‘tab:olive’, ‘tab:cyan’}

总结如下:

1、用RGB或者RGBA元组,取值范围均归一到[0,1],(e.g:(0.1, 0.2, 0.5) or (0.1, 0.2, 0.5, 0.3))2、用十六进制的颜色表示方式代替RGB或者RGBA元组,(e.g., ‘#0F0F0F’ or ‘#0F0F0F0F’);
3、用[0,1]中的浮点数字符串来表示,(e.g., 灰色表示为:‘0.5’)4、用缩写,{‘b’, ‘g’, ‘r’, ‘c’, ‘m’, ‘y’, ‘k’, ‘w’}中的任意一个;
5、用以“xkcd:”为前缀的xkcd颜色名称,(e.g.,“xkcd:sky blue”)6、用 {‘C0’, ‘C1’, ‘C2’, ‘C3’, ‘C4’, ‘C5’, ‘C6’, ‘C7’, ‘C8’, ‘C9’},表示当前默认颜色列表中的颜色;
7、用来自’ T10 '分类调色板的Tableau颜色(这是默认的颜色循环)当中的一个,{‘tab:blue’, ‘tab:orange’, ‘tab:green’, ‘tab:red’, ‘tab:purple’, ‘tab:brown’, ‘tab:pink’, ‘tab:gray’, ‘tab:olive’, ‘tab:cyan’}
import matplotlib
for name, hex in matplotlib.colors.cnames.items():
    print(name, hex, end=' ')

在这里插入图片描述

3.4 内置颜色映射

https://matplotlib.net/stable/gallery/color/colormap_reference.html
显示几个内置颜色映射的范围如下:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm
from colorspacious import cspace_converter
from collections import OrderedDict

cmaps = OrderedDict()

cmaps['Sequential (2)'] = [
            'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink',
            'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia',
            'hot', 'afmhot', 'gist_heat', 'copper']

cmaps['Miscellaneous'] = [
            'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern',
            'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg',
            'gist_rainbow', 'rainbow', 'jet', 'turbo', 'nipy_spectral',
            'gist_ncar']


nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps.items())
gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))


def plot_color_gradients(cmap_category, cmap_list, nrows):
    fig, axes = plt.subplots(nrows=nrows)
    fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99)
    axes[0].set_title(cmap_category + ' colormaps', fontsize=14)

    for ax, name in zip(axes, cmap_list):
        ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
        pos = list(ax.get_position().bounds)
        x_text = pos[0] - 0.01
        y_text = pos[1] + pos[3]/2.
        fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10)

    # Turn off *all* ticks & spines, not just the ones with colormaps.
    for ax in axes:
        ax.set_axis_off()


for cmap_category, cmap_list in cmaps.items():
    plot_color_gradients(cmap_category, cmap_list, nrows)

plt.show()

在这里插入图片描述
在这里插入图片描述

3.5 xkcd 颜色映射

148 个 X11/CSS4 颜色名称中的 95 个也出现在 xkcd 颜色调查中。几乎所有这些都映射到 X11/CSS4 和 xkcd 调色板中的不同颜色值。只有“黑色”、“白色”和“青色”是相同的。

例如,‘blue’映射到’#0000FF’而’xkcd:blue’映射到 ‘#0343DF’。由于这些名称冲突,所有 xkcd 颜色都有 'xkcd:'前缀。

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

import matplotlib.colors as mcolors
import matplotlib.patches as mpatch

overlap = {name for name in mcolors.CSS4_COLORS
           if f'xkcd:{name}' in mcolors.XKCD_COLORS}

fig = plt.figure(figsize=[9, 5])
ax = fig.add_axes([0, 0, 1, 1])

n_groups = 3
n_rows = len(overlap) // n_groups + 1

for j, color_name in enumerate(sorted(overlap)):
    css4 = mcolors.CSS4_COLORS[color_name]
    xkcd = mcolors.XKCD_COLORS[f'xkcd:{color_name}'].upper()

    # Pick text colour based on perceived luminance.
    rgba = mcolors.to_rgba_array([css4, xkcd])
    luma = 0.299 * rgba[:, 0] + 0.587 * rgba[:, 1] + 0.114 * rgba[:, 2]
    css4_text_color = 'k' if luma[0] > 0.5 else 'w'
    xkcd_text_color = 'k' if luma[1] > 0.5 else 'w'

    col_shift = (j // n_rows) * 3
    y_pos = j % n_rows
    text_args = dict(fontsize=10, weight='bold' if css4 == xkcd else None)
    ax.add_patch(mpatch.Rectangle((0 + col_shift, y_pos), 1, 1, color=css4))
    ax.add_patch(mpatch.Rectangle((1 + col_shift, y_pos), 1, 1, color=xkcd))
    ax.text(0.5 + col_shift, y_pos + .7, css4,
            color=css4_text_color, ha='center', **text_args)
    ax.text(1.5 + col_shift, y_pos + .7, xkcd,
            color=xkcd_text_color, ha='center', **text_args)
    ax.text(2 + col_shift, y_pos + .7, f'  {color_name}', **text_args)

for g in range(n_groups):
    ax.hlines(range(n_rows), 3*g, 3*g + 2.8, color='0.7', linewidth=1)
    ax.text(0.5 + 3*g, -0.3, 'X11/CSS4', ha='center')
    ax.text(1.5 + 3*g, -0.3, 'xkcd', ha='center')

ax.set_xlim(0, 3 * n_groups)
ax.set_ylim(n_rows, -1)
ax.axis('off')

plt.show()

在这里插入图片描述

3.6 颜色命名表

# import matplotlib.pyplot as plt
# import numpy as np

# fig, ax = plt.subplots()  # Create a figure containing a single axes.
# ax.plot([1, 2, 3, 4], [1, 4, 2, 3])  # Plot some data on the axes.

from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors


def plot_colortable(colors, sort_colors=True, emptycols=0):

    cell_width = 212
    cell_height = 22
    swatch_width = 48
    margin = 12

    # Sort colors by hue, saturation, value and name.
    if sort_colors is True:
        by_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgb(color))),
                         name)
                        for name, color in colors.items())
        names = [name for hsv, name in by_hsv]
    else:
        names = list(colors)

    n = len(names)
    ncols = 4 - emptycols
    nrows = n // ncols + int(n % ncols > 0)

    width = cell_width * 4 + 2 * margin
    height = cell_height * nrows + 2 * margin
    dpi = 72

    fig, ax = plt.subplots(figsize=(width / dpi, height / dpi), dpi=dpi)
    fig.subplots_adjust(margin/width, margin/height,
                        (width-margin)/width, (height-margin)/height)
    ax.set_xlim(0, cell_width * 4)
    ax.set_ylim(cell_height * (nrows-0.5), -cell_height/2.)
    ax.yaxis.set_visible(False)
    ax.xaxis.set_visible(False)
    ax.set_axis_off()

    for i, name in enumerate(names):
        row = i % nrows
        col = i // nrows
        y = row * cell_height

        swatch_start_x = cell_width * col
        text_pos_x = cell_width * col + swatch_width + 7

        ax.text(text_pos_x, y, name, fontsize=14,
                horizontalalignment='left',
                verticalalignment='center')

        ax.add_patch(
            Rectangle(xy=(swatch_start_x, y-9), width=swatch_width,
                      height=18, facecolor=colors[name], edgecolor='0.7')
        )

    return fig

plot_colortable(mcolors.BASE_COLORS, sort_colors=False, emptycols=1)
plt.show()

在这里插入图片描述

plot_colortable(mcolors.TABLEAU_COLORS, sort_colors=False, emptycols=2)

在这里插入图片描述

plot_colortable(mcolors.CSS4_COLORS)

在这里插入图片描述

xkcd_fig = plot_colortable(mcolors.XKCD_COLORS, "XKCD Colors")
xkcd_fig.savefig("XKCD_Colors.png")

4、Colorcet库

https://colorcet.holoviz.org/index.html#
Colorcet 是 感知准确的 256 色颜色图,用于 Python 绘图程序,如 Bokeh、Matplotlib、HoloView 和 Datashader。

目前包括两种类型的颜色图:连续和分类。连续的颜色图在感知上是一致的,每种新颜色在感知上都与之前和之后的颜色相同。连续地图由勘探目标中心的Peter Kovesi使用Kovesi(2015)中描述的方法构建。

pip install colorcet

在这里插入图片描述
安装colorcet后,颜色图将可用 有两种格式:

  • 散景风格的调色板,即十六进制的 RGB 颜色的 Python 列表 字符串,如 [‘#000000’, …, ‘#ffffff’]
  • 使用归一化幅度的 Matplotlib LinearSegmentedColormap, 像 LinearSegmentedColormap.from_list(“火”,[ [0.0,0.0,0.0], …, [1.0,1.0,1.0] ], 256)
import numpy as np
import colorcet as cc
import matplotlib.pyplot as plt

xs, _ = np.meshgrid(np.linspace(0, 1, 80), np.linspace(0, 1, 10))
plt.imshow(xs, cmap=cc.cm.colorwheel);  # use tab completion to choose
plt.colorbar(); 
plt.show()

在这里插入图片描述

import scicomap as sc
import matplotlib.pyplot as plt

f = sc.compare_cmap(image="grmhd",
                    ctype='sequential',
                    ncols=15,
                    uniformize=True,
                    symmetrize=True,
                    unif_kwargs={'lift': 20},
                    sym_kwargs={'bitonic': False, 'diffuse': True})

在这里插入图片描述
在这里插入图片描述

5、颜色对照表

颜色展示英文代码形象颜色HEX格式RGB格式
▇▇▇▇▇▇▇▇LightPink浅粉红#FFB6C1255,182,193
▇▇▇▇▇▇▇▇Pink粉红#FFC0CB255,192,203
▇▇▇▇▇▇▇▇Crimson猩红#DC143C220,20,60
▇▇▇▇▇▇▇▇LavenderBlush脸红的淡紫色#FF0F5255,240,245
▇▇▇▇▇▇▇▇PaleVioletRed苍白的紫罗兰红色#DB7093219,112,147
▇▇▇▇▇▇▇▇HotPink热情的粉红#FF69B4255,105,180
▇▇▇▇▇▇▇▇DeepPink深粉色#FF1493255,20,147
▇▇▇▇▇▇▇▇MediumVioletRed适中的紫罗兰红色#C71585199,21,133
▇▇▇▇▇▇▇▇Orchid兰花的紫色#DA70D6218,112,214
▇▇▇▇▇▇▇▇Thistle#D8BFD8216,191,216
▇▇▇▇▇▇▇▇Plum李子#DDA0DD221,160,221
▇▇▇▇▇▇▇▇Violet紫罗兰#EE82EE238,130,238
▇▇▇▇▇▇▇▇Magenta洋红#FF00FF255,0,255
▇▇▇▇▇▇▇▇Fuchsia灯笼海棠(紫红色)#FF00FF255,0,255
▇▇▇▇▇▇▇▇DarkMagenta深洋红色#8B008B139,0,139
▇▇▇▇▇▇▇▇Purple紫色#800080128,0,128
▇▇▇▇▇▇▇▇MediumOrchid适中的兰花紫#BA55D3186,85,211
▇▇▇▇▇▇▇▇DarkViolet深紫罗兰色#9400D3148,0,211
▇▇▇▇▇▇▇▇DarkOrchid深兰花紫#9932CC153,50,204
▇▇▇▇▇▇▇▇Indigo靛青#4B008275,0,130
▇▇▇▇▇▇▇▇BlueViolet深紫罗兰的蓝色#8A2BE2138,43,226
▇▇▇▇▇▇▇▇MediumPurple适中的紫色#9370DB147,112,219
▇▇▇▇▇▇▇▇MediumSlateBlue适中的板岩暗蓝灰色#7B68EE123,104,238
▇▇▇▇▇▇▇▇SlateBlue板岩暗蓝灰色#6A5ACD106,90,205
▇▇▇▇▇▇▇▇DarkSlateBlue深板岩暗蓝灰色#483D8B72,61,139
▇▇▇▇▇▇▇▇Lavender薰衣草花的淡紫色#E6E6FA230,230,250
▇▇▇▇▇▇▇▇GhostWhite幽灵的白色#F8F8FF248,248,255
▇▇▇▇▇▇▇▇Blue纯蓝#0000FF0,0,255
▇▇▇▇▇▇▇▇IndigoBlue靛蓝#0000FF0,0,255
▇▇▇▇▇▇▇▇MediumBlue适中的蓝色#0000CD0,0,205
▇▇▇▇▇▇▇▇MidnightBlue午夜的蓝色#19197025,25,112
▇▇▇▇▇▇▇▇DarkBlue深蓝色#00008B0,0,139
▇▇▇▇▇▇▇▇Navy海军蓝,深靛蓝#0000800,0,128
▇▇▇▇▇▇▇▇RoyalBlue皇家蓝#4169E165,105,225
▇▇▇▇▇▇▇▇CornflowerBlue矢车菊的蓝色#6495ED100,149,237
▇▇▇▇▇▇▇▇LightSteelBlue淡钢蓝#B0C4DE176,196,222
▇▇▇▇▇▇▇▇LightSlateGray浅石板灰#778899119,136,153
▇▇▇▇▇▇▇▇SlateGray石板灰#708090112,128,144
▇▇▇▇▇▇▇▇DodgerBlue道奇蓝#1E90FF30,144,255
▇▇▇▇▇▇▇▇AliceBlue爱丽丝蓝#F0F8FF240,248,255
▇▇▇▇▇▇▇▇SteelBlue钢蓝#4682B470,130,180
▇▇▇▇▇▇▇▇LightSkyBlue淡蓝色#87CEFA135,206,250
▇▇▇▇▇▇▇▇SkyBlue天蓝色#87CEEB135,206,235
▇▇▇▇▇▇▇▇DeepSkyBlue深天蓝#00BFFF0,191,255
▇▇▇▇▇▇▇▇LightBlue淡蓝#ADD8E6173,216,230
▇▇▇▇▇▇▇▇PowderBlue火药蓝#B0E0E6176,224,230
▇▇▇▇▇▇▇▇CadetBlue军校蓝#5F9EA095,158,160
▇▇▇▇▇▇▇▇Azure蔚蓝色#F0FFFF240,255,255
▇▇▇▇▇▇▇▇LightCyan淡青色#E1FFFF225,255,255
▇▇▇▇▇▇▇▇PaleTurquoise苍白的绿宝石#AFEEEE175,238,238
▇▇▇▇▇▇▇▇Cyan青色#00FFFF0,255,255
▇▇▇▇▇▇▇▇Aqua水绿色#00FFFF0,255,255
▇▇▇▇▇▇▇▇DarkTurquoise深绿宝石#00CED10,206,209
▇▇▇▇▇▇▇▇DarkSlateGray深石板灰#2F4F4F47,79,79
▇▇▇▇▇▇▇▇DarkCyan深青色#008B8B0,139,139
▇▇▇▇▇▇▇▇Teal水鸭色#0080800,128,128
▇▇▇▇▇▇▇▇MediumTurquoise适中的绿宝石#48D1CC72,209,204
▇▇▇▇▇▇▇▇LightSeaGreen浅海洋绿#20B2AA32,178,170
▇▇▇▇▇▇▇▇Turquoise绿宝石#40E0D064,224,208
▇▇▇▇▇▇▇▇Auqamarin绿玉/碧绿色#7FFFAA127,255,170
▇▇▇▇▇▇▇▇MediumAquamarine适中的碧绿色#00FA9A0,250,154
▇▇▇▇▇▇▇▇MediumSpringGreen适中的春天的绿色#00FF7F0,255,127
▇▇▇▇▇▇▇▇MintCream薄荷奶油#F5FFFA245,255,250
▇▇▇▇▇▇▇▇SpringGreen春天的绿色#3CB37160,179,113
▇▇▇▇▇▇▇▇SeaGreen海洋绿#2E8B5746,139,87
▇▇▇▇▇▇▇▇Honeydew蜂蜜#F0FFF0240,255,240
▇▇▇▇▇▇▇▇LightGreen淡绿色#90EE90144,238,144
▇▇▇▇▇▇▇▇PaleGreen苍白的绿色#98FB98152,251,152
▇▇▇▇▇▇▇▇DarkSeaGreen深海洋绿#8FBC8F143,188,143
▇▇▇▇▇▇▇▇LimeGreen酸橙绿#32CD3250,205,50
▇▇▇▇▇▇▇▇Lime酸橙色#00FF000,255,0
▇▇▇▇▇▇▇▇ForestGreen森林绿#228B2234,139,34
▇▇▇▇▇▇▇▇Green纯绿#0080000,128,0
▇▇▇▇▇▇▇▇DarkGreen深绿色#0064000,100,0
▇▇▇▇▇▇▇▇Chartreuse查特酒绿#7FFF00127,255,0
▇▇▇▇▇▇▇▇LawnGreen草坪绿#7CFC00124,252,0
▇▇▇▇▇▇▇▇GreenYellow绿黄色#ADFF2F173,255,47
▇▇▇▇▇▇▇▇OliveDrab橄榄土褐色#556B2F85,107,47
▇▇▇▇▇▇▇▇Beige米色(浅褐色)#F5F5DC245,245,220
▇▇▇▇▇▇▇▇LightGoldenrodYellow浅秋麒麟黄#FAFAD2250,250,210
▇▇▇▇▇▇▇▇Ivory象牙#FFFFF0255,255,240
▇▇▇▇▇▇▇▇LightYellow浅黄色#FFFFE0255,255,224
▇▇▇▇▇▇▇▇Yellow纯黄#FFFF00255,255,0
▇▇▇▇▇▇▇▇Olive橄榄#808000128,128,0
▇▇▇▇▇▇▇▇DarkKhaki深卡其布#BDB76B189,183,107
▇▇▇▇▇▇▇▇LemonChiffon柠檬薄纱#FFFACD255,250,205
▇▇▇▇▇▇▇▇PaleGodenrod灰秋麒麟#EEE8AA238,232,170
▇▇▇▇▇▇▇▇Khaki卡其布#F0E68C240,230,140
▇▇▇▇▇▇▇▇Gold#FFD700255,215,0
▇▇▇▇▇▇▇▇Cornislk玉米色#FFF8DC255,248,220
▇▇▇▇▇▇▇▇GoldEnrod秋麒麟#DAA520218,165,32
▇▇▇▇▇▇▇▇FloralWhite花的白色#FFFAF0255,250,240
▇▇▇▇▇▇▇▇OldLace老饰带#FDF5E6253,245,230
▇▇▇▇▇▇▇▇Wheat小麦色#F5DEB3245,222,179
▇▇▇▇▇▇▇▇Moccasin鹿皮鞋#FFE4B5255,228,181
▇▇▇▇▇▇▇▇Orange橙色#FFA500255,165,0
▇▇▇▇▇▇▇▇PapayaWhip番木瓜#FFEFD5255,239,213
▇▇▇▇▇▇▇▇BlanchedAlmond漂白的杏仁#FFEBCD255,235,205
▇▇▇▇▇▇▇▇NavajoWhite纳瓦霍白/印第安黄#FFDEAD255,222,173
▇▇▇▇▇▇▇▇AntiqueWhite古代的白色#FAEBD7250,235,215
▇▇▇▇▇▇▇▇Tan晒黑#D2B48C210,180,140
▇▇▇▇▇▇▇▇BrulyWood结实的树#DEB887222,184,135
▇▇▇▇▇▇▇▇Bisque(浓汤)乳脂、番茄等#FFE4C4255,228,196
▇▇▇▇▇▇▇▇DarkOrange深橙色#FF8C00255,140,0
▇▇▇▇▇▇▇▇Linen亚麻布#FAF0E6250,240,230
▇▇▇▇▇▇▇▇Peru秘鲁#CD853F205,133,63
▇▇▇▇▇▇▇▇PeachPuff桃色#FFDAB9255,218,185
▇▇▇▇▇▇▇▇SandyBrown沙棕色#F4A460244,164,96
▇▇▇▇▇▇▇▇Chocolate巧克力#D2691E210,105,30
▇▇▇▇▇▇▇▇SaddleBrown马鞍棕色#8B4513139,69,19
▇▇▇▇▇▇▇▇SeaShell海贝壳#FFF5EE255,245,238
▇▇▇▇▇▇▇▇Sienna黄土赭色#A0522D160,82,45
▇▇▇▇▇▇▇▇LightSalmon浅鲜肉(鲑鱼)色#FFA07A255,160,122
▇▇▇▇▇▇▇▇Coral珊瑚#FF7F50255,127,80
▇▇▇▇▇▇▇▇OrangeRed橙红色#FF4500255,69,0
▇▇▇▇▇▇▇▇DarkSalmon深鲜肉(鲑鱼)色#E9967A233,150,122
▇▇▇▇▇▇▇▇Tomato番茄#FF6347255,99,71
▇▇▇▇▇▇▇▇MistyRose薄雾玫瑰#FFE4E1255,228,225
▇▇▇▇▇▇▇▇Salmon鲜肉(鲑鱼)色#FA8072250,128,114
▇▇▇▇▇▇▇▇Snow#FFFAFA255,250,250
▇▇▇▇▇▇▇▇LightCoral淡珊瑚色#F08080240,128,128
▇▇▇▇▇▇▇▇RosyBrown玫瑰棕色#BC8F8F188,143,143
▇▇▇▇▇▇▇▇IndianRed印度红#CD5C5C205,92,92
▇▇▇▇▇▇▇▇Red纯红#FF0000255,0,0
▇▇▇▇▇▇▇▇Brown棕色#A52A2A165,42,42
▇▇▇▇▇▇▇▇FireBrick耐火砖#B22222178,34,34
▇▇▇▇▇▇▇▇DarkRed深红色#8B0000139,0,0
▇▇▇▇▇▇▇▇Maroon栗色#800000128,0,0
▇▇▇▇▇▇▇▇White纯白#FFFFFF255,255,255
▇▇▇▇▇▇▇▇WhiteSmoke白烟#F5F5F5245,245,245
▇▇▇▇▇▇▇▇Gainsboro庚斯博罗灰色/淡灰色/亮灰#DCDCDC220,220,220
▇▇▇▇▇▇▇▇LightGray浅灰色#D3D3D3211,211,211
▇▇▇▇▇▇▇▇Silver银白色#C0C0C0192,192,192
▇▇▇▇▇▇▇▇DarkGray深灰色#A9A9A9169,169,169
▇▇▇▇▇▇▇▇Gray灰色#808080128,128,128
▇▇▇▇▇▇▇▇DimGray暗淡的灰色#696969105,105,105
▇▇▇▇▇▇▇▇Black纯黑#0000000,0,0

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(✿◡‿◡)
感谢各位大佬童鞋们的支持!( ´ ▽´ )ノ ( ´ ▽´)っ!!!

在这里插入图片描述

Matplotlib 是一个强大的 Python 数据可视化库,它提供了丰富的颜色映射表(colormap)来帮助用户更直观地展示数据。颜色映射表是将数据值映射到颜色的工具,使得数据的变化可以通过颜色的变化来体现。Matplotlib 提供了多种颜色映射表,主要分为以下几类: 1. **顺序(Sequential)颜色映射表**:适用于数据值具有自然顺序的情况,颜色从浅到深或从一种颜色渐变到另一种颜色。 2. **发散(Diverging)颜色映射表**:适用于数据值具有中心点(如零)的情况,颜色从中心点向两边发散。 3. **定性(Qualitative)颜色映射表**:适用于分类数据,颜色之间没有明显的顺序关系。 4. **循环(Cyclic)颜色映射表**:适用于数据值具有周期性循环的情况,颜色在周期结束时重复。 以下是一些常用的颜色映射表示例: 1. **顺序颜色映射表**: - `viridis` - `plasma` - `inferno` - `magma` - `cividis` 2. **发散颜色映射表**: - `coolwarm` - `bwr` - `seismic` 3. **定性颜色映射表**: - `tab10` - `tab20` - `Set1` - `Set2` 4. **循环颜色映射表**: - `twilight` - `hsv` 使用颜色映射表的示例代: ```python import matplotlib.pyplot as plt import numpy as np # 生成示例数据 data = np.random.rand(10, 10) # 使用顺序颜色映射表 plt.imshow(data, cmap='viridis') plt.colorbar() plt.title('Sequential Colormap - Viridis') plt.show() # 使用发散颜色映射表 plt.imshow(data, cmap='coolwarm') plt.colorbar() plt.title('Diverging Colormap - Coolwarm') plt.show() # 使用定性颜色映射表 plt.imshow(data, cmap='tab10') plt.colorbar() plt.title('Qualitative Colormap - Tab10') plt.show() # 使用循环颜色映射表 plt.imshow(data, cmap='twilight') plt.colorbar() plt.title('Cyclic Colormap - Twilight') plt.show() ``` 通过这些示例代,你可以看到不同颜色映射表在数据可视化中的效果。选择合适的颜色映射表可以显著提高数据可视化的可读性和美观性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值