Given a tree, you are supposed to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤20) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N−1. Then N lines follow, each corresponds to a node, and gives the indices of the left and right children of the node. If the child does not exist, a - will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each case, print in one line YES and the index of the last node if the tree is a complete binary tree, or NO and the index of the root if not. There must be exactly one space separating the word and the number.
Sample Input 1:
9
7 8
- -
- -
- -
0 1
2 3
4 5
- -
- -
Sample Output 1:
YES 8
Sample Input 2:
8
- -
4 5
0 6
- -
2 3
- 7
- -
- -
Sample Output 2:
NO 1
思路:
1. 有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。
2. 递归树中最大的下标值,看最大下标值是否等于节点个数,若等于则说明是满二叉树,不等于说明不是
3. 用变量maxn记录最大的下标值,ans记录最后一个结点,root为起始根节点
#include <iostream>
#include <vector>
#include <cmath>
#include <string>
#include <queue>
#include <algorithm>
using namespace std;
struct node
{
int left, right;
}tree[100];
int n;
int maxn = -1, ans;
void dfs(int root, int index){
if (index > maxn){
maxn = index;
ans = root;
}
if(tree[root].left != -1) dfs(tree[root].left, index*2);
if(tree[root].right != -1) dfs(tree[root].right, index*2+1);
}
int main(){
scanf("%d", &n);
int hash[100] = {0} ,root = 0;
for(int i = 0; i < n; i++){
string n1, n2;
cin >> n1 >> n2;
if (n1 == "-") tree[i].left = -1;
else{
tree[i].left = stoi(n1);
hash[stoi(n1)] = 1;
}
if (n2 == "-") tree[i].right = -1;
else{
tree[i].right = stoi(n2);
hash[stoi(n2)] = 1;
}
}
while(hash[root] != 0) root++;
dfs(root,1);
if (maxn == n){
printf("YES ");
printf("%d", ans);
}else{
printf("NO ");
printf("%d", root);
}
return 0;
}

本文介绍了一种通过递归查找最大下标值的方法来判断一棵树是否为完全二叉树的算法。输入包括节点数量及各节点的左右孩子信息,输出判断结果及关键节点下标。
1979

被折叠的 条评论
为什么被折叠?



