CDQ分治小结

CDQ分治特别之处:时间

CDQ分治分的是时间。
然而。
时间又怎么了。
我们可以知道:时间上,后面的时间不能为前面的时间做贡献(只要你不站在上帝视角)
所以当且仅当 i<j 时, ansiansj
所以CDQ分治主要是这样做

void CDQ(l,r)
{
    int mid=(l+r)>>1;//(l+r)/2
    CDQ(l,mid);
    CDQ(mid+1,r);
    Do something.
}

其中,我们设CDQ的复杂度为 T(i) Do something的复杂度用 D(i) 代替。
T(i)=2T(i2)+D(i)
D(i)=O(n) T(i)=2T(i2)+O(1)=O(n log2n)
D(i)=O(n log2n) T(i)=2T(i2)+O(n)=O(n log22n)
题目示例:三维偏序

CDQ分治是一种高效的离线分治算法,常用于解决多维偏序问题、数据范围较大的问题以及某些带修改的查询问题。它通过将操作离线处理并按照时间或维度进行分治,从而降低时间复杂度。以下是几个CDQ分治的经典例题及其解析。 ### 三维偏序问题 三维偏序问题是CDQ分治的经典应用之一。问题描述为:给定 $ n $ 个三元组 $ (x_i, y_i, z_i) $,定义偏序关系为 $ x_i \leq x_j, y_i \leq y_j, z_i \leq z_j $ 时,$ j $ 对 $ i $ 有贡献。要求对每个元素,统计有多少个元素比它大(即满足偏序关系)。 CDQ分治的处理方式是将三元组按 $ x $ 排序,然后在分治过程中递归处理左右两部分,最后统计左半部分对右半部分的贡献。对于每一层分治,可以将问题转化为二维偏序问题,并使用树状数组维护 $ y $ 和 $ z $ 的信息。 ```cpp // 伪代码示意 void cdq(int l, int r) { if (l == r) return; int mid = (l + r) / 2; cdq(l, mid); cdq(mid + 1, r); // 合并阶段,统计左半部分对右半部分的贡献 // 按照 y 排序,使用树状数组维护 z 的信息 } ``` ### 动态逆序对问题 动态逆序对问题要求在支持单点修改的情况下,多次查询某个区间内的逆序对数量。该问题可以通过CDQ分治离线处理所有修改和查询操作。 CDQ分治的核心思想是将所有操作按照时间顺序处理,并将修改操作与查询操作分离。在每一步分治中,将前一半的操作作为修改,后一半的操作作为查询,统计前一半修改对后一半查询的影响。 ```cpp // 伪代码示意 void cdq(int l, int r, vector<Query> &queries) { if (l == r) return; int mid = (l + r) / 2; cdq(l, mid, queries); cdq(mid + 1, r, queries); // 处理跨越 mid 的查询 } ``` ### K大数查询(浙江省选) K大数查询问题是CDQ分治的典型应用之一,其问题描述为:有 $ N $ 个位置,支持两种操作: 1. 在某个位置插入一个数。 2. 查询某个区间内的第 $ k $ 大数。 CDQ分治可以将问题转化为多维偏序问题,其中一维是时间,另一维是数值范围。通过二分答案和CDQ分治的结合,可以在 $ O(n \log^2 n) $ 的时间复杂度内解决问题。 ```cpp // 伪代码示意 bool check(int mid) { // 利用CDQ分治统计满足条件的数的数量 } void cdq(int l, int r, ...) { // 分治处理 } ``` ### 总结 CDQ分治算法在处理多维偏序问题、动态数据结构问题等方面具有显著优势。通过将问题离线处理,并在分治过程中合并子问题的解,可以有效地降低时间复杂度。上述例题展示了CDQ分治在不同场景下的应用,包括三维偏序、动态逆序对和K大数查询等问题。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值