TensorFlow 实战(二)—— tf train(优化算法)

本文介绍了TensorFlow中的优化器,包括GradientDescent、Adadelta、Adam等,并讲解了如何进行梯度计算和学习率衰减。此外,文章还提倡分享知识,助力人工智能教育。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.youkuaiyun.com/jiangjunshow

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

                       

Training  |  TensorFlow

  • tf 下以大写字母开头的含义为名词的一般表示一个类(class)

1. 优化器(optimizer)

优化器的基类(Optimizer base class)主要实现了两个接口,一是计算损失函数的梯度,二是将梯度作用于变量。tf.train 主要提供了如下的优化函数:

  • tf.train.Optimizer
  • tf.train.GradientDescentOptimizer
  • tf.train.AdadeltaOpzimizer
    • Ada delta
  • tf.train.AdagradDAOptimizer
  • tf.train.MomentumOptimizer
  • tf.train.AdamOptimizer
  • tf.train.FtrlOptimizer
  • tf.train.ProximalGradientDescentOptimizer
  • tf.train.ProximalAdagradOptimizer
  • tf.train.RMSPropOptimizer

2. 梯度计算

TensorFlow 同时也提供了给定 TensorFlow 计算图(computation graph)的导数。上节提到的优化器类(optimizer classes)会自动计算 computation graph 的导数,但用户自定义优化器时,可以使用如下低级别的函数:

  • tf.gradients
  • tf.AggregationMethod
  • tf.stop_gradient
  • tf.hessians

2. 学习率衰减(decaying the learning rate)

  • tf.train.exponential_decay

    # 实现的是如下的操作decayed_lr = lr * decay_rate ^ (global_step/decay_steps)
        
    • 1
    • 2
    • 3
    • 4
    在其 tf 下的使用为:
        
    • 1
    lr = tf.train.exponential_decay(0.1, global_step, 100, .96, staircase=True)
        
    • 1
  • tf.train.inverse_time_decay

  • tf.train.natural_exp_decay
  • tf.train.piecewise_constant
  • tf.train.polynomial_decay
           

给我老师的人工智能教程打call!http://blog.youkuaiyun.com/jiangjunshow
这里写图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值