CF569A
题意 定义第一阶菱形是一个正方形 n阶就是n-1阶菱形表面有多少个边加多少个
一开始没看懂题 以为中间是正方形 盲猜了一发 n==1?1:(2n-2)(2*n-2)+4;
后来发现其实规律是 ans[i] = ans[i-1]+(i-1)*4
因为每次多贡献四个边
/*
if you can't see the repay
Why not just work step by step
rubbish is relaxed
to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
const ll mod = (int)1e9+7;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}
void exgcd(ll a,ll b,ll &x,ll &y,ll &d){if(!b) {d = a;x = 1;y=0;}else{exgcd(b,a%b,y,x,d);y-=x*(a/b);}}//printf("%lld*a + %lld*b = %lld\n", x, y, d);
/*namespace sgt
{
#define mid ((l+r)>>1)
#undef mid
}*/
int ans[500];
int main()
{
//ios::sync_with_stdio(false);
//freopen("a.txt","r",stdin);
//freopen("b.txt","w",stdout);
int n;
scanf("%d",&n);
ans[1] = 1;
for(int i = 2;i<=100;++i)
{
ans [i] = ans[i-1]+(i-1)*4;
}
printf("%d\n",ans[n]);
//fclose(stdin);
//fclose(stdout);
//cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
return 0;
}
cf569B
这题也蛮有意思
给你n长度的数组 你可以把一项 arr[i] 变为 -arr[i] - 1
问你乘积最大的时候数组长啥样
做法不难发现一个数只有是负数的时候绝对值最大
所以我们取偶数个负数使得他绝对值最大而且又为正数
我们首先把数组所有元素转换成负数 因为-arr[i]-1保证负数存在
如果一个数组是偶数长度 我们直接取所有负数
否则我们取 n-1 个负数 并且让绝对值最大的负数变成正数
举个例子 -6 转换一下是 5
那么你少乘一个6变成乘一个5
答案变成原答案绝对值 5/6
但是你 -2 转换一下是1
少乘一个2变成乘一个1
答案变成原答案绝对值 1/2 显然亏了
所以把最小的负数转换即可
/*
if you can't see the repay
Why not just work step by step
rubbish is relaxed
to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
const ll mod = (int)1e9+7;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}
void exgcd(ll a,ll b,ll &x,ll &y,ll &d){if(!b) {d = a;x = 1;y=0;}else{exgcd(b,a%b,y,x,d);y-=x*(a/b);}}//printf("%lld*a + %lld*b = %lld\n", x, y, d);
/*namespace sgt
{
#define mid ((l+r)>>1)
#undef mid
}*/
const int MAX_N = 100025;
int arr[MAX_N];
int main()
{
//ios::sync_with_stdio(false);
//freopen("a.txt","r",stdin);
//freopen("b.txt","w",stdout);
int n;
scanf("%d",&n);
for(int i = 1;i<=n;++i)
scanf("%d",&arr[i]);
if(n%2==0)
{
for(int i = 1;i<=n;++i)
if(arr[i]>=0) arr[i] = -arr[i]-1;
}
else
{
for(int i = 1;i<=n;++i)
if(arr[i]>=0) arr[i] = -arr[i] - 1;
int minn = 1,ck;
for(int i = 1;i<=n;++i)
{
if(arr[i]<minn)
{
minn = arr[i];
ck = i;
}
}
arr[ck]=-arr[ck]-1;
}
for(int i = 1;i<=n;++i)
i==n?printf("%d\n",arr[i]):printf("%d ",arr[i]);
//fclose(stdin);
//fclose(stdout);
//cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
return 0;
}
CF569C
其实这题是找规律做的
就是前n操作不会造成循环 后面n-1会形成循环 开数组记录就行
/*
if you can't see the repay
Why not just work step by step
rubbish is relaxed
to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
const ll mod = (int)1e9+7;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}
void exgcd(ll a,ll b,ll &x,ll &y,ll &d){if(!b) {d = a;x = 1;y=0;}else{exgcd(b,a%b,y,x,d);y-=x*(a/b);}}//printf("%lld*a + %lld*b = %lld\n", x, y, d);
/*namespace sgt
{
#define mid ((l+r)>>1)
#undef mid
}*/
const int MAX_N = 100025;
int STA[MAX_N],END[MAX_N],STA_[MAX_N],END_[MAX_N],arr[MAX_N],ANS[MAX_N][3],ANS_[MAX_N][3];
queue<int > q,q_;
int main()
{
//ios::sync_with_stdio(false);
//freopen("a.txt","r",stdin);
//freopen("b.txt","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1;i<=n;++i)
{
scanf("%d",&arr[i]);
if(i!=1&&i!=n)
q.push(arr[i]);
}
STA[0] = arr[1];
END[0] = arr[n];
for(int i = 1;i<=n;++i)
{
int tmp = STA[i-1];
int tmp_ = q.front();
q.pop();
q.push(END[i-1]);
ANS[i][0] = tmp;
ANS[i][1] = tmp_;
if(tmp>tmp_)
{
STA[i] = tmp;
END[i] = tmp_;
}
else
{
STA[i] = tmp_;
END[i] = tmp;
}
}
STA_[0] = STA[n];
END_[0] = END[n];
while(!q.empty())
{
int tmp = q.front();
q.pop();
q_.push(tmp);
}
for(int i = 1;i<n;++i)
{
int tmp = STA_[i-1];
int tmp_ = q_.front();
q_.pop();
q_.push(END_[i-1]);
ANS_[i][0] = tmp;
ANS_[i][1] = tmp_;
if(tmp>tmp_)
{
STA_[i] = tmp;
END_[i] = tmp_;
}
else
{
STA_[i] = tmp_;
END_[i] = tmp;
}
}
if(n==2)
{
for(int i = 1;i<=m;++i)
{
ll ask;
scanf("%lld",&ask);
if(ask==1)
{
printf("%d %d\n",arr[1],arr[2]);
}
else
{
printf("%d %d\n",max(arr[1],arr[2]),min(arr[1],arr[2]));
}
}
}
else
{
for(int i = 1;i<=m;++i)
{
ll ask;
scanf("%lld",&ask);
if(ask<=n)
{
printf("%d %d\n",ANS[ask][0],ANS[ask][1]);
}
else
{
ask-=n;
ask%=(n-1);
if(ask==0) ask = n-1;
printf("%d %d\n",ANS_[ask][0],ANS_[ask][1]);
}
}
}
//fclose(stdin);
//fclose(stdout);
//cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
return 0;
}
CF569D
题意就是让你用不同的向量(dx,dy)
x+dx,y+dy走路使得每一个格子都被走
构造题
用左右横跳来构造答案 1,1 -> n,m -> 1,2 -> n,m-1 -> … -> n,1
如果n为奇数最后一行也要按照上下横跳顺序解决
/*
if you can't see the repay
Why not just work step by step
rubbish is relaxed
to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
const ll mod = (int)1e9+7;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}
void exgcd(ll a,ll b,ll &x,ll &y,ll &d){if(!b) {d = a;x = 1;y=0;}else{exgcd(b,a%b,y,x,d);y-=x*(a/b);}}//printf("%lld*a + %lld*b = %lld\n", x, y, d);
/*namespace sgt
{
#define mid ((l+r)>>1)
#undef mid
}*/
int main()
{
//ios::sync_with_stdio(false);
//freopen("a.txt","r",stdin);
//freopen("b.txt","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1;i<=n/2;++i)
{
for(int j = 1;j<=m;++j)
{
printf("%d %d\n",i,j);
printf("%d %d\n",n-i+1,m-j+1);
}
}
if(n%2==1)
{
int down = 1,up = m;
for(int i = 1;i<=m;++i)
{
if(i%2==1)
{
printf("%d %d\n",n/2+1,down++);
}
else
{
printf("%d %d\n",n/2+1,up--);
}
}
}
//fclose(stdin);
//fclose(stdout);
//cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
return 0;
}
CF1180E
给你 n,m,q
n长度的arr数组 有n道菜的价格
m长度的brr数组 有m个人的钱
q长度的 opt数组,x数组,y数组
如果opt 是 1 把第x个菜价格改成 y
如果opt 是 2 把 第x个人钱改成 y
大家排队买 如果能买就买能买的最贵的
问你一个人他最后等大家买完了再买能买到最贵的是什么
我们这样想 把可行域放在数轴上
如果有一道菜 就把 1 - arr[i] 区间加 1 代表这里有食物
有一个人 代表 1 - brr[i] 区间减 1 代表能买
所以问的就是1 - N最大的maxx[i]等于 0 的下标
离散化一下即可求出来
/*
if you can't see the repay
Why not just work step by step
rubbish is relaxed
to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
const ll mod = (int)1e9+7;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}
void exgcd(ll a,ll b,ll &x,ll &y,ll &d){if(!b) {d = a;x = 1;y=0;}else{exgcd(b,a%b,y,x,d);y-=x*(a/b);}}//printf("%lld*a + %lld*b = %lld\n", x, y, d);
const int MAX_N = 300025;
int arr[MAX_N],brr[MAX_N],tmp[MAX_N*3],opt[MAX_N],x[MAX_N],y[MAX_N];
const int N = MAX_N*3;
int Max(int a,int b){return a>b?a:b;}
map<int ,int >mp;
namespace sgt
{
#define mid ((l+r)>>1)
int maxx[N<<2],col[N<<2];
void up(int rt)
{
maxx[rt] = Max(maxx[rt<<1],maxx[rt<<1|1]);
}
void down(int rt,int l,int r)
{
if(col[rt])
{
col[rt<<1]+=col[rt];
col[rt<<1|1]+=col[rt];
maxx[rt<<1]+=col[rt];
maxx[rt<<1|1]+=col[rt];
col[rt] = 0 ;
}
}
void update(int rt,int l,int r,int x,int y,int v)
{
if(x<=l&&r<=y)
{
col[rt]+=v;
maxx[rt]+=v;
return ;
}
down(rt,l,r);
if(x>mid) update(rt<<1|1,mid+1,r,x,y,v);
else if(y<=mid) update(rt<<1,l,mid,x,y,v);
else update(rt<<1,l,mid,x,y,v),update(rt<<1|1,mid+1,r,x,y,v);
up(rt);
}
int query(int rt,int l,int r,int x,int y)
{
if(maxx[rt]<=0) return -1;
if(l==r) return l;
down(rt,l,r);
int ans = -1;
if(maxx[rt<<1|1]>0&&mid<y) ans = query(rt<<1|1,mid+1,r,x,y);
if(ans==-1&&x<=mid) ans = query(rt<<1,l,mid,x,y);
return ans;
}
#undef mid
}
int main()
{
//ios::sync_with_stdio(false);
//freopen("a.txt","r",stdin);
//freopen("b.txt","w",stdout);
int n,m,q,cnt = 0;
scanf("%d%d",&n,&m);
for(int i = 1;i<=n;++i) scanf("%d",&arr[i]),tmp[++cnt] = arr[i];
for(int i = 1;i<=m;++i) scanf("%d",&brr[i]),tmp[++cnt] = brr[i];
scanf("%d",&q);
for(int i = 1;i<=q;++i)
{
scanf("%d%d%d",&opt[i],&x[i],&y[i]);
tmp[++cnt] = y[i];
}
sort(tmp+1,tmp+1+cnt);
int sz = unique(tmp+1,tmp+1+cnt)-tmp-1;
for(int i = 1;i<=n;++i) {int t = arr[i];arr[i] = lower_bound(tmp+1,tmp+1+sz,arr[i]) - tmp;mp[arr[i]] = t;}
for(int i = 1;i<=m;++i) {int t = brr[i];brr[i] = lower_bound(tmp+1,tmp+1+sz,brr[i]) - tmp;mp[brr[i]] = t;}
for(int i = 1;i<=q;++i) {int t = y[i];y[i] = lower_bound(tmp+1,tmp+1+sz,y[i]) - tmp;mp[y[i]] = t;}
for(int i = 1;i<=n;++i)
sgt::update(1,1,N,1,arr[i],1);
for(int i = 1;i<=m;++i)
sgt::update(1,1,N,1,brr[i],-1);
for(int i = 1;i<=q;++i)
{
if(opt[i]==1)
{
sgt::update(1,1,N,1,arr[x[i]],-1);
arr[x[i]] = y[i];
sgt::update(1,1,N,1,arr[x[i]],1);
if(sgt::query(1,1,N,1,N)==-1) printf("-1\n");
else printf("%d\n",mp[sgt::query(1,1,N,1,N)]);
}
else
{
sgt::update(1,1,N,1,brr[x[i]],1);
brr[x[i]] = y[i];
sgt::update(1,1,N,1,brr[x[i]],-1);
if(sgt::query(1,1,N,1,N)==-1) printf("-1\n");
else printf("%d\n",mp[sgt::query(1,1,N,1,N)]);
}
}
//fclose(stdin);
//fclose(stdout);
//cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
return 0;
}