原理和前一个的侮辱词汇分类差不多,都是通过测试求出概率,概率大的为分类。(我概率论真的不好,好难理解。。。)
import numpy as np
import random
import re
"""创建词汇表"""
def createVocabList(dataSet):
vocabSet = set([])
for document in dataSet: # 取出每一行文档(每行七个单词)
vocabSet = vocabSet | set(document) # 先将文档转换为set集合,无需不重复,再取并集
return list(vocabSet)
"""判断输入集中单词是否在词汇表中"""
def setOfWordsVec(vocabList, inputSet):
returnVec = [0] * len(vocabList) # 创建一个元素都为0的向量
for word in inputSet: # 取输入集的每一个单词
if word in vocabList: # 如果单词在词汇表中
returnVec[vocabList.index(word)] = 1 # 标志位置为一,表示所检测单词在词汇表中
else:
print("the word:$s is not in my Vocabulary!" % word)
return returnVec
"""计算概率"""
def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix) # 样本个数,6
numWords = len(trainMatrix[0]) # 每个样本长度,32
pAbusive = sum(trainCategory) / float(numTrainDocs) # 文档属于侮辱类的概率
p0Num = np.ones(numWords) # 非侮辱类情况下,某个单词出现的概率
p1Num = np.ones(numWords) # 侮辱类情况下,某个单词出现的概率
p0Denom = 2.0 # 分母,都设置为2(我们需要的是两个比较,所以都设置为共同的分母不影响大小)
p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i] # 每个侮辱类样本都相加(记录侮辱类每个单词的个数)
p1Denom += sum(trainMatrix[i]) # 求和所有侮辱类样本的单词数
else:
p0Num += trainMatrix[i] # 每个非侮辱类样本都相加(记录侮辱类每个单词的个数)
p0Denom += sum(trainMatrix[i]) # 求和所有非侮辱类样本的单词数
p1Vect = np.log(p1Num / p1Denom) # 取对数,防止下溢出
p0Vect = np.log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive
"""分类"""
def classifyNB(vecClassify, p0Vec, p1Vec, pClass1):
p1 = sum(vecClassify * p1Vec) + np.log(pClass1) # log(A*B)=logA+logB,前边没有log,是因为这需要两个数比较,同时log和都不log不会影响比较大小
p0 = sum(vecClassify * p0Vec) + np.log(1 - pClass1)
if p1 > p0:
return 1
else:
return 0
"""切割字符串"""
def textParse(bigString):
listOfTokens = re.split(r'\W+', bigString) # 将一个字符串进行切割,并且去掉特殊字符(非字母非数字),去掉单个字母
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
"""邮件测试"""
def spamTest():
docList = []
classList = []
fullText = []
for i in range(1, 26):
wordList = textParse(open('email/spam/%d.txt' % i).read()) # 读取垃圾邮件
docList.append(wordList)
fullText.extend(wordList)
classList.append(1) # 标志分类为1
wordList = textParse(open('email/ham/%d.txt' % i).read()) # 读取正常邮件
docList.append(wordList)
fullText.extend(wordList)
classList.append(0) # 标志分类为0
vocabList = createVocabList(docList) # 创建词汇表
trainingSet = list(range(50)) # 创建一个集合0-49
testSet = []
for i in range(10): # 遍历十次,选十个测试数据
randIndex = int(random.uniform(0, len(trainingSet))) # 随机选取测试下标
testSet.append(trainingSet[randIndex]) # 测试邮件添加到测试集合中
del (trainingSet[randIndex]) # 在训练集合删除测试数据
trainMat = []
trainClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWordsVec(vocabList, docList[docIndex])) # 单词转换为词集模型(生成01矩阵来表示单词是否在词汇表中出现)
trainClasses.append(classList[docIndex]) # 添加训练数据的分类标签
p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = setOfWordsVec(vocabList, docList[docIndex]) # 取出测试数据的词集模型
if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: # 判断分类
errorCount += 1
print("分类错误的测试集:%s,正确分类:%s" % (docList[docIndex], classList[docIndex]))
print("错误率:", float(errorCount) / len(testSet))
if __name__ == '__main__':
spamTest()