半监督学习

半监督学习结合监督和无监督,利用少量标注数据和大量未标注数据提升学习效果。基本假设包括平滑假设、聚类假设和流形假设。这种学习方式广泛应用于分类、回归、聚类和降维等任务,旨在通过数据的局部结构和密集性来改善模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.简介

半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法

半监督学习:让学习器不依赖外界交互、自动地利用未标记样本来提升学习性能。

这里写图片描述

它主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。主要分为半监督分类,半监督回归,半监督聚类和半监督降维算法。

2.基本假设

要利用未标记样本,必然要做一些将未标记样本所揭示的数据分布信息与类别标记相联系的假设。

1)平滑假设(Smoothness Assumption):位于稠密数据区域的两个距离很近的样例的类标签相似,也就是说,当两个样例被稠密数据区域中的边连接时,它们在很大的概率下有相同的类标签;相反地,当两个样例被稀疏数据区域分开时,它们的类标签趋于不同。

2)聚类假设(Cluster Assumption):当两个样例位于同一聚类簇时,它们在很大的概率下有相同的类标签。这个假设的等价定义为低密度分离假设(Low Sensity Separation Assumption),即分类决策边界应该穿过稀疏数据区域,而避免将稠密数据区域的样例分到决策边界两侧。

聚类假设是指样本数据间的距离相互比较近时,则他们拥有相同的类别。根据该假设,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值