win10+cuda9.0+cudnn7.6.5 for cuda9.0+torch1.0

CUDA安装与PyTorch配置
本文详细介绍了如何检查CUDA的安装状态,包括nvcc版本验证,以及将cuDNN库文件移至CUDA目录的方法。此外,还提供了使用conda安装特定版本PyTorch和TorchVision的步骤,确保与CUDA9.0兼容。最后,通过添加清华镜像源加速安装过程。
部署运行你感兴趣的模型镜像

1.#检查cuda的安装情况
nvcc --version
2.将cudnn中的库文件移动到cuda的文件夹中
3.#检查cudnn,跑demo程序,两个PASS
在这里插入图片描述
4.#cuda9.0
conda install pytorch1.0.0 torchvision0.2.1 cuda90
5.#添加源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
6.安装pytorch
conda install --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ pytorch=1.0.0 torchvision=0.2.1 cuda90 -c pytorch

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

graspnet) xiaobei@xiaobei-Legion-Y9000P-IRX9:~/lianxi_ws/src/graspnet-baseline/pointnet2$ conda search cudnn -c conda-forge Loading channels: done # Name Version Build Channel cudnn 5.1 0 anaconda/pkgs/free cudnn 5.1.10 cuda7.5_0 anaconda/pkgs/free cudnn 5.1.10 cuda8.0_0 anaconda/pkgs/free cudnn 6.0 0 anaconda/pkgs/free cudnn 6.0.21 cuda7.5_0 anaconda/pkgs/free cudnn 6.0.21 cuda8.0_0 anaconda/pkgs/free cudnn 7.0.5 cuda8.0_0 anaconda/pkgs/main cudnn 7.0.5 cuda8.0_0 pkgs/main cudnn 7.1.2 cuda9.0_0 anaconda/pkgs/main cudnn 7.1.2 cuda9.0_0 pkgs/main cudnn 7.1.3 cuda8.0_0 anaconda/pkgs/main cudnn 7.1.3 cuda8.0_0 pkgs/main cudnn 7.2.1 cuda9.2_0 anaconda/pkgs/main cudnn 7.2.1 cuda9.2_0 pkgs/main cudnn 7.3.1 cuda10.0_0 anaconda/pkgs/main cudnn 7.3.1 cuda10.0_0 pkgs/main cudnn 7.3.1 cuda9.0_0 anaconda/pkgs/main cudnn 7.3.1 cuda9.0_0 pkgs/main cudnn 7.3.1 cuda9.2_0 anaconda/pkgs/main cudnn 7.3.1 cuda9.2_0 pkgs/main cudnn 7.6.0 cuda10.0_0 anaconda/pkgs/main cudnn 7.6.0 cuda10.0_0 pkgs/main cudnn 7.6.0 cuda10.1_0 anaconda/pkgs/main cudnn 7.6.0 cuda10.1_0 pkgs/main cudnn 7.6.0 cuda9.0_0 anaconda/pkgs/main cudnn 7.6.0 cuda9.0_0 pkgs/main cudnn 7.6.0 cuda9.2_0 anaconda/pkgs/main cudnn 7.6.0 cuda9.2_0 pkgs/main cudnn 7.6.4 cuda10.0_0 anaconda/pkgs/main cudnn 7.6.4 cuda10.0_0 pkgs/main cudnn 7.6.4 cuda10.1_0 anaconda/pkgs/main cudnn 7.6.4 cuda10.1_0 pkgs/main cudnn 7.6.4 cuda9.0_0 anaconda/pkgs/main cudnn 7.6.4 cuda9.0_0 pkgs/main cudnn 7.6.4 cuda9.2_0 anaconda/pkgs/main cudnn 7.6.4 cuda9.2_0 pkgs/main cudnn 7.6.5 cuda10.0_0 anaconda/pkgs/main cudnn 7.6.5 cuda10.0_0 pkgs/main cudnn 7.6.5 cuda10.1_0 anaconda/pkgs/main cudnn 7.6.5 cuda10.1_0 pkgs/main cudnn 7.6.5 cuda10.2_0 anaconda/pkgs/main cudnn 7.6.5 cuda10.2_0 pkgs/main cudnn 7.6.5 cuda9.0_0 anaconda/pkgs/main cudnn 7.6.5 cuda9.0_0 pkgs/main cudnn 7.6.5 cuda9.2_0 anaconda/pkgs/main cudnn 7.6.5 cuda9.2_0 pkgs/main cudnn 7.6.5.32 h01f27c4_0 conda-forge cudnn 7.6.5.32 h01f27c4_1 conda-forge cudnn 7.6.5.32 h5754881_0 conda-forge cudnn 7.6.5.32 h5754881_1 conda-forge cudnn 7.6.5.32 ha8d7eb6_0 conda-forge cudnn 7.6.5.32 ha8d7eb6_1 conda-forge cudnn 7.6.5.32 hc0a50b0_0 conda-forge cudnn 7.6.5.32 hc0a50b0_1 conda-forge cudnn 8.0.5.39 h01f27c4_1 conda-forge cudnn 8.0.5.39 ha5ca753_1 conda-forge cudnn 8.0.5.39 hc0a50b0_1 conda-forge cudnn 8.1.0.77 h469e712_0 conda-forge cudnn 8.1.0.77 h90431f1_0 conda-forge cudnn 8.2.0.53 h2c0ae14_0 conda-forge cudnn 8.2.0.53 h86fa8c9_0 conda-forge cudnn 8.2.1 cuda11.3_0 anaconda/pkgs/main cudnn 8.2.1 cuda11.3_0 pkgs/main cudnn 8.2.1.32 h2c0ae14_0 conda-forge cudnn 8.2.1.32 h86fa8c9_0 conda-forge cudnn 8.3.2.44 hed8a83a_0 conda-forge cudnn 8.3.2.44 hed8a83a_1 conda-forge cudnn 8.4.0.27 hed8a83a_0 conda-forge cudnn 8.4.0.27 hed8a83a_1 conda-forge cudnn 8.4.1.50 hed8a83a_0 conda-forge cudnn 8.8.0.121 h0800d71_0 conda-forge cudnn 8.8.0.121 h0800d71_1 conda-forge cudnn 8.8.0.121 h10b603f_5 conda-forge cudnn 8.8.0.121 h264754d_2 conda-forge cudnn 8.8.0.121 h264754d_3 conda-forge cudnn 8.8.0.121 h264754d_4 conda-forge cudnn 8.8.0.121 h459966d_0 conda-forge cudnn 8.8.0.121 h459966d_1 conda-forge cudnn 8.8.0.121 h56904bc_3 conda-forge cudnn 8.8.0.121 h56904bc_4 conda-forge cudnn 8.8.0.121 h838ba91_2 conda-forge cudnn 8.8.0.121 h838ba91_3 conda-forge cudnn 8.8.0.121 h838ba91_4 conda-forge cudnn 8.8.0.121 hcdd5f01_4 conda-forge cudnn 8.8.0.121 hcdd5f01_5 conda-forge cudnn 8.8.0.121 hd5ab71f_4 conda-forge cudnn 8.9.1.23 h10b603f_0 conda-forge cudnn 8.9.1.23 hcdd5f01_0 conda-forge cudnn 8.9.2.26 cuda11_0 anaconda/pkgs/main cudnn 8.9.2.26 cuda11_0 pkgs/main cudnn 8.9.2.26 cuda12_0 anaconda/pkgs/main cudnn 8.9.2.26 cuda12_0 pkgs/main cudnn 8.9.7.29 h092f7fd_3 conda-forge cudnn 8.9.7.29 h10b603f_0 conda-forge cudnn 8.9.7.29 h10b603f_1 conda-forge cudnn 8.9.7.29 h10b603f_2 conda-forge cudnn 8.9.7.29 h56904bc_1 conda-forge cudnn 8.9.7.29 hbc23b4c_3 conda-forge cudnn 8.9.7.29 hcdd5f01_0 conda-forge cudnn 8.9.7.29 hcdd5f01_2 conda-forge cudnn 9.1.1.17 cuda12_0 anaconda/pkgs/main cudnn 9.1.1.17 cuda12_0 pkgs/main cudnn 9.1.1.17 cuda12_1 anaconda/pkgs/main cudnn 9.1.1.17 cuda12_1 pkgs/main cudnn 9.2.1.18 h93471f6_0 conda-forge cudnn 9.2.1.18 hbc370b7_0 conda-forge cudnn 9.3.0.75 h3e9b439_1 conda-forge cudnn 9.3.0.75 h50b6be5_1 conda-forge cudnn 9.3.0.75 h62a6f1c_2 conda-forge cudnn 9.3.0.75 h93bb076_0 conda-forge cudnn 9.3.0.75 hc149ed2_0 conda-forge cudnn 9.3.0.75 hf36481c_2 conda-forge cudnn 9.7.1.26 h50b6be5_0 conda-forge cudnn 9.7.1.26 h969bcc4_0 conda-forge cudnn 9.8.0.87 h81d5506_0 conda-forge cudnn 9.8.0.87 h81d5506_1 conda-forge cudnn 9.8.0.87 hf36481c_0 conda-forge cudnn 9.8.0.87 hf36481c_1 conda-forge cudnn 9.9.0.52 h81d5506_0 conda-forge cudnn 9.9.0.52 hf36481c_0 conda-forge cudnn 9.10.0.56 h0fdc2d1_0 conda-forge cudnn 9.10.0.56 h0fdc2d1_1 conda-forge cudnn 9.10.0.56 h0fdc2d1_2 conda-forge cudnn 9.10.0.56 hcd2ec93_0 conda-forge cudnn 9.10.0.56 hcd2ec93_1 conda-forge cudnn 9.10.0.56 hcd2ec93_2 conda-forge cudnn 9.10.1.4 h7646684_0 conda-forge cudnn 9.10.1.4 haad7af6_0 conda-forge cudnn 9.10.1.4 hbcb9cd8_1 conda-forge
最新发布
07-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值