正则化(Normalization)

博客介绍了正则化(Normalization),其主要思想是对每个样本计算p - 范数并让元素除以该范数,使处理后样本p - 范数为1。给出了p - 范数计算公式,该方法多用于文本分类和聚类。还介绍了使用preprocessing.normalize()函数和processing.Normalizer()类进行数据转换的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正则化:将每个样本缩放到单位范数(每个样本的范数为1),如果后面要使用如二次型(点积)或者其他核函数方法计算两个样本之间的相似性,这个方法会很有用。 
Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是是的每个处理后样本的p-范数(L1-norm, L2-norm)等于1。 
p-范数的计算公式:||x||p=(|x1|^p+|x2|^p+…+|xn|^p)^(1/p) 
该方法主要应用在文本分类和聚类中。例如,对于两个TF-IDF向量的I2-norm进行点积,就可以得到这两个向量的余弦相似性。

1.可以使用preprocessing.normalize()函数对指定数据进行转换。

X=  [[ 1., -1.,  2.],
    [ 2.,  0.,  0.],
    [ 0.,  1., -1.]]
X_normalized = preprocessing.normalize(X, norm='l2')
X_normalized
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])12345678

怎么算出来的呢?

 

按行算:
[1,-1,2]的L2范数是(1^2+(-1)^2+2^2)^(1/2)=6^(1/2)=2.45
第一行的每个元素除以L2范数,得到:
[1/2.45, -1/2.45, 2/2.45] = [0.4, -0.4, 0.8..]
第二行和第一行一样,也是算自己的L2范数:(2^2+0^2+0^2)^(1/2)=2,
[ 2/2,  0/2,  0/2]=[1,0,0]……123456

 

2.可以使用processing.Normalizer()类实现对训练集合测试集的拟合与转换:

normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>>normalizer
Normalizer(copy=True, norm='l2')

>>>normalizer.transform(X)
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

>>> normalizer.transform([[-1.,  1., 0.]])             
array([[-0.70...,  0.70...,  0.  ...]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值