Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
代码:
class Solution {
public:
//由于行增和列增的性质,可从左下角开始,向上递减,向右递增
//以左下为起点,往右上搜索,如果target比当前m[row][column]小,则row--,否则column++;相等返回true
//时间复杂度O(m+n)
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int row=matrix.size()-1,column=0;
while(row>=0 && column<matrix[0].size()){
if(target<matrix[row][column]){
row--;
}else if(target>matrix[row][column]){
column++;;
}else{
return true;
}
}
return false;
}
};
本文介绍了一种在具有特定排序特性的二维矩阵中搜索目标值的高效算法。利用矩阵行增和列增的性质,从左下角开始搜索,通过比较目标值与矩阵元素的大小,快速定位目标或判断不存在。
1790

被折叠的 条评论
为什么被折叠?



