24、两两交换链表中的节点

博客围绕链表操作展开,提出两两交换链表中相邻节点的问题,如将 1->2->3->4 转换为 2->1->4->3。并给出递归法(动态规划)的解决思路,包括节点交换步骤及对剩余节点的处理逻辑。

给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。

给定 1->2->3->4, 你应该返回 2->1->4->3.

方法一:递归法(动态规划)

思路:

【1】对于链表pre->p->other交换结点

【2】变成p->pre->other

【3】再对other进行翻转​​​。

若other为NULL说明不用再翻转。若other->next为空,说明只剩下一个结点,pre->next直接指向该结点。

ListNode* dpSwap(ListNode* pre, ListNode* p) {
	ListNode* other = p->next;
	p->next = pre;
	if (other == NULL) {    //other结点为空说明结点个数为偶数
		pre->next = NULL;
	}
	else if (other->next == NULL) {   //other->next为空说明结点个数为奇数
		pre->next = other;
	}
	else {
		pre->next = dpSwap(other, other->next);
	}
	return p;
}

ListNode* swapPairs(ListNode* head) {
	//链表为空或只有一个元素直接返回
	if (head == NULL || head->next == NULL)
		return head;
	return dpSwap(head, head->next);
}

 

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
### 两两交换链中的节点算法实现 在解决两两交换链中的节点问题时,可以采用递归或迭代的方法。以下是两种方法的详细说明和代码实现。 #### 方法一:递归法 递归方法的核心思想是将链分为当前需要交换的两个节点和剩余链两部分。首先判断链是否为空或只有一个节点,如果是,则直接返回头节点。然后递归调用 `swapPairs` 函数处理剩余的节点,并更新指针关系[^2]。 ```python class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def swapPairs(self, head: ListNode) -> ListNode: # 如果链为空或只有一个节点,直接返回 if not head or not head.next: return head # 获取当前节点的下一个节点 p = head.next # 递归调用处理剩余节点 head.next = self.swapPairs(p.next) # 将 p 的 next 指向当前节点 p.next = head # 返回新的头节点 p return p ``` #### 方法二:迭代法 迭代方法通过引入一个虚拟头节点(dummy node)来简化指针操作。使用一个临时指针 `temp` 遍历链,每次交换 `temp.next` 和 `temp.next.next` 两个节点,并更新指针关系[^4]。 ```python class Solution: def swapPairs(self, head: ListNode) -> ListNode: # 创建虚拟头节点 dummy = ListNode(0) dummy.next = head # 使用 temp 指针遍历链 temp = dummy while temp.next and temp.next.next: # 定义需要交换的两个节点 node1 = temp.next node2 = temp.next.next # 更新指针关系 temp.next = node2 node1.next = node2.next node2.next = node1 # 移动 temp 指针到下一个待交换节点前 temp = node1 # 返回新的头节点 return dummy.next ``` ### 算法复杂度分析 - **时间复杂度**:无论是递归还是迭代方法,都需要遍历整个链,因此时间复杂度为 O(n),其中 n 是链节点数。 - **空间复杂度**: - 递归方法的空间复杂度为 O(n),因为递归调用会占用栈空间。 - 迭代方法的空间复杂度为 O(1),因为它只使用了常数个额外变量。 ### 注意事项 在实现过程中,需要注意边界条件的处理,例如链为空或只有一个节点的情况。此外,在交换节点时,确保正确更新指针关系,避免出现断链或死循环的问题[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值