Federated Probabilistic Preference Distribution Modelling with Compactness Co-Clustering for Privacy-Preserving Multi-Domain Recommendation
引言
这篇论文提出的概率偏好分布是通过使用高斯分布来表示用户和项目的偏好。在论文中,作者提出了一种名为Federated Probabilistic Preference Distribution Modelling(联邦概率偏好分布建模)的新方法,该方法旨在解决隐私保护的多领域推荐问题。该方法在局部领域中建模用户/项目的概率偏好分布,并通过全局服务器聚合这些用户偏好分布。此外,作者还提出了一种紧凑性共聚类方法,用于在FPPDM++中利用用户的相似性关系。这种方法可以聚集具有相似口味或特征的用户。
相关工作
这部分主要工作概述了相关研究领域的发展,以及与本文提出的工作方法的关系。本文主要关注的是在保护用户隐私的情况下,如何在多个领域之间提供高质量的推荐。现有的跨领域推荐(CDR)模型在解决保护用户隐私的多领域推荐问题方面表现不佳。此外,这些多个领域都遇到了数据稀疏性问题。
文章首先介绍了一些跨领域推荐(CDR)模型,如DARec、DOML和CDRIB等。这些模型在处理多领域推荐问题时,主要关注用户-项目交互作用,而忽略了潜在的语义关系。此外,这些模型主要依赖嵌入而非分布来表示用户和项目,这可能导致在某些情况下的不准确理解用户的偏好。
接下来,文章提出了基于联邦学习的FPPDM(Federated Probabilistic Preference Distribution Modelling)方法,用于在保护用户隐私的情况下,解决多领域推荐问题。FPPDM涉及两个主要组件,即本地领域建模组件和全局服务器聚合组件。本地领域建模组件利用神经网络捕获用户/项目的偏好分布,通过在本地领域建模用户-项目评分交互作用。全局服务器聚合组件则聚集用户的偏好分布,并将它们发送回本地领域。
为了进一步利用用户的相似性关系,文章还提出了一种紧凑性共聚类方法,用于FPPDM++。紧凑性共聚类方法可以基于用户的口味或特征聚集用户,从而提供更满意的结果。通过使用紧凑性共聚类方法,模型能够在保护用户隐私的情况下,实现高质量的跨领域推荐。
方法论
这部分主要内容描述了Federated Probabilistic Preference Distribution Modelling(FPPDM)框架的设计以及如何解决Privacy-Preserving Multi-Domain Recommendation(PP-MDR)问题。FPPDM框架包括两个主要组件:1)本地领域建模组件,用于基于用户-项目评分交互来建模用户/项目的概率偏好分布;2)全局服务器聚合组件,负责聚合用户的偏好分布并将它们发送回到本地领域。
在FPPDM++中,作者提出了一种紧凑性共聚类方法,通过聚类用户的偏好分布来进一步提高推荐结果的准确性。这种方法可以聚集具有类似偏好或特征的用户,从而在保护用户隐私的同时提供更满意的推荐结果。

联邦概率偏好分布(FPPDM)
客户端领域建模组件
FPPDM涉及两个主要的组件:本地领域建模组件和全局服务器聚合组件。本地领域建模组件用于基于用户-项目评分交互来建模用户/项目的概率偏好分布。
- 定义用户和项目的一热编码向量;
- 利用图卷积神经网络(GCNN)建模用户/项目的偏好分布;
- 利用用户和项目交互的信息建立用户-项目交互图;
- 通过引入用户嵌入和项目嵌入来更好地聚合有用信息;
- 利用分布基于的度量学习损失函数训练模型来预测用户对项目的评分;
- 提出一个正则化项以减小相应的本地用户分布与全局用户分布之间的距离;
- 将训练好的本地用户分布发送到全局服务器。
为减小相应的本地用户分布与全局用户分布之间的距离,我们提出了以下正则化项:
L P = ∑ k ( µ k − µ ) 2 + ∑ k ( σ k 2 − σ 2 ) 2 L_P = ∑_k (µ_k - µ)^2 + ∑_k (σ_k^2 - σ^2)^2 LP=

论文提出了一种新的联邦概率偏好分布模型(FPPDM),结合高斯分布表示用户和项目偏好,解决多领域推荐中的隐私保护问题。通过局部建模和全局聚合,以及紧凑性共聚类方法,FPPDM在Douban和Amazon数据集上表现出色,优于现有模型。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



