Records of Reinfocement Learning Experiments

本文记录了作者跟随Movan的强化学习课程进行的实验过程,详细介绍了使用自然DQN算法在迷宫环境中训练智能体的学习体验。作者通过编程实践加深了对强化学习概念的理解,并分享了在更复杂迷宫中应用简单神经网络的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Records of Reinforcement Learning Experiments

Background and Reference course:

I have been following the Movan’s RL course for more than a month.
At first, I found some of concepts really hard to understand, then I started programming these algorithms, I perhaps comprehended the meaning of these concepts and the principle of agent updating.
So thanks to Movan and I also want to share my experiments for others.
As for why to use English, because of the request of my boss.
It’s always right to practice a little more at the normal times.

the natural DQN with the env of Maze

the codes has been uploaded to my github —— thank your stars~

In this codes, you can customize the environment, such as resetting maze size, resolution and penalty and reward points.
在这里插入图片描述as you can see, the maze is bigger than Movan~ when you train your agent to learning how to get reward with simple neural network will be so difficult.

my natural DQN is same as Movan’s, the tensor graph is ——
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hehedadaq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值