ALBERT、XLNet,NLP技术发展太快,如何才能跟得上节奏?

谷歌Lab近日发布了一个新的预训练模型"ALBERT"全面在SQuAD 2.0、GLUE、RACE等任务上超越了BERT、XLNet、RoBERTa再次刷新了排行榜!ALBERT是一种轻量版本的BERT,利用更好的参数来训练模型,但是效果却反而得到了很大提升!ALBERT的核心思想是采用了两种减少模型参数的方法,比BERT占用的内存空间小很多,同时极大提升了训练速度,更重要的是效果上也有很大的提升! 

▲BERT 和 ALBERT 两者的参数量比较。

这次发布的模型由Google Lab的 Lan Zhenzhong博士来主导完成,而且Lan Zhenzhong博士正好也是贪心学院的顾问以及教研团队的成员。近期我们也会邀请Zhenzhong博士给大家做一次分享。

为了迎接NLP领域的各种变化,贪心学院的《自然语言处理》课程也在不断迭代更新,保证不错过任何2周之内出现的重要技术。自然语言处理无非是目前最大的风口,从Word2Vec、ElMo、GPT、Bert到XLNet, 我们见证了这个领域的高速发展以及未来的前景。互联网中的大量的文本以及IOT时代赋予我们的全新交互带来了这个领域的爆发。

那这样的训练营到底是怎么样的呢? 下面来详细介绍一下《自然语言处理高阶训练营》的内容,也可以添加我们专业的AI职业规划师来咨询,我们的咨询师也是顶级AI公司出来的哦~ 

01课程大纲

第一阶段 算法与机器学习基础

【核心知识点】

. 时间复杂度,空间复杂度分析

. Master's Theorem,递归复杂度分析

. 动态规划以及Dynamic Time Warpping

. Earth Mover's Distance

. 维特比算法

. LR、决策树、随机森林、XGBoost

. 梯度下降法、随机梯度下降法、牛顿法

. Projected Gradient Descent

. L0, L1, L2, L-Infinity Norm

. Grid Search, Bayesian Optimization

. 凸函数、凸集、Duality、KKT条件

. Linear SVM、Dual of SVM

. Kernel Tick, Mercer's Theorem

. Kernelized Linear Regression、Kernelized KNN

. Linear/Quadratic Programming

. Integer/Semi-definite Programming

. NP-completeness/NP-hard/P/NP

. Constrained Relaxation、Approximate Algorithm

. Convergence Analysis of Iterative Algorithm

【部分案例讲解】

. 基于Sparse Quadratic Programming的股票投资组合优化策略编写

. 基于Earth Mover's Distance的短文本相似度计算

. 基于Projected Gradient Descent和非负矩阵分解的词向量学习

. 基于Linear Programming的机票定价系统

. 基于DTW的文本相似度分析

第二阶段 语言模型与序列标注

【核心知识点】

. 文本预处理技术(tf-idf,Stemming等)

. 文本领域的特征工程

. 倒排表、信息检索技术

. Noisy Channel Model

. N-gram模型,词向量介绍

. 常见的Smoothing Techniques

. Learning to Rank

. Latent Variable Model

. EM算法与Local Optimality

. Convergence of EM

. EM与K-Means, GMM

. Variational Autoencoder与Text Disentangling

 .有向图与无向图模型

. Conditional Indepence、D-separation、Markov Blanket

. HMM模型以及参数估计

. Viterbi、Baum Welch

. Log-Linear Model与参数估计

. CRF模型与Linear-CRF

. CRF的Viterbi Decoding与参数估计

【部分案例讲解】

. 基于无监督学习方法的问答系统搭建

. 基于监督学习的Aspect-Based 情感分析系统搭建

. 基于CRF、LSTM-CRF、BERT-CRF 的命名实体识别应用 

. 基于语言模型和Noisy Channel Model的拼写纠错

第三阶段 信息抽取、词向量与知识图谱

【核心知识点】

. 命名实体识别技术

. 信息抽取技术

. Snowball, KnowitAll, RunnerText

. Distant Supervision, 无监督学习方法

. 实体统一、实体消歧义、指代消解

. 知识图谱、实体与关系

. 词向量、Skip-Gram、Negative Sampling

. 矩阵分解、CBOW与Glove向量

. Contexualized Embedding与ELMo

. KL Divergence与Gaussian Embedding

. 非欧式空间与Pointcare Embedding

. 黎曼空间中的梯度下降法

. 知识图谱嵌入技术

. TransE, NTN 的详解

. Node2Vec详解

. Adversial Learning与KBGAN

【部分案例讲解】

. 利用非结构化数据和信息抽取技术构建知识图谱

. 任务导向型聊天机器人的搭建

. 包含Intent与Entity Extraction的NLU模块实现

. 基于SkipGram的推荐系统实现(参考Airbnb论文)

第四阶段 深度学习与NLP

【核心知识点】

. Pytorch与Tensorflow详解. 表示学习,分布式表示技术

. 文本领域中的Disentangling

. 深度神经网络与BP算法详解

. RNN与Vanishing/Exploding Gradient

. LSTM与GRU

. Seq2Seq与注意力机制

. Greedy Decoding与Beam Search

. BI-LSTM-CRF模型

. Neural Turing Machine

. Memory Network

. Self Attention,Transformer以及Transformer-XL.

. Bert的详解

. BERT-BiLSTM-CRF

. GPT,MASS,  XLNet

. Low-resource learning

. 深度学习的可视化

. Laywer-wise Relevance Propagation

【部分案例讲解】

. 利用纯Python实现BP算法

. 基于Seq2Seq+注意力机制、基于Transformer的机器翻译系统

. 基于Transformer的闲聊型聊天机器人

. 基于BI-LSTM-CRF和BERT-BiLSTM-CRF在命名实体中的比较

. 利用Laywer-wise RP可视化端到端的机器翻译系统

第五阶段 贝叶斯模型与NLP

【核心知识点】

. 概率图模型与条件独立

. Markov Blanket 

. Dirichlet分布、Multinomial分布

. Beta分布、Conjugate Prior回顾

. Detail Balance

. 主题模型详解

. MCMC与吉布斯采样

. 主题模型与Collapsed Gibbs Sampling

. Metropolis Hasting, Rejection Sampling

. Langevin Dyamics与SGLD

. 分布式SGLD与主题模型

. Dynamic Topic Model 

. Supervised Topic Model

. KL Divergence与ELBO

. Variantional Inference, Stochastic VI

. 主题模型与变分法

. Nonparametric Models

. Dirichlet Process

. Chinese Restarant Process

. Bayesian Deep Neural Network 

. VAE与Reparametrization trick

. Bayesian RNN/LSTM

. Bayesian Word2Vec

. MMSB

【部分案例讲解】

. 利用Collapsed Gibbs Sampler和SGLD对主题模型做Inference

. 基于Bayesian-LSTM的命名实体识别

. 利用主题模型做文本分类在 

. LDA的基础上修改并搭建无监督情感分析模型

第六阶段 开放式项目 (Optional)

【项目介绍】

开放式项目又称为课程的capstone项目。作为课程中的很重要的一部分,可以选择work on一个具有挑战性的项目。通过此项目,可以深入去理解某一个特定领域,快速成为这个领域内的专家,并且让项目成果成为简历中的一个亮点。

 

【项目流程】

Step 1: 组队 

Step 2:立项以及提交proposal

Step 3: Short Survey Paper 

Step 4: 中期项目Review 

Step 5: 最终项目PPT以及代码提交 

Step 6: 最终presentation 

Step 7: Technical Report/博客

【输出结果】

完整PPT、代码和Conference-Style Technical Report 最为项目的最后阶段,我们将组织学员的presentation分享大会。借此我们会邀请一些同行业的专家、从业者、企业招聘方、优质猎头资源等共同参与分享大会。

为AI从业者/研究生/研究员专门定制

全网唯一《NLP自然语言处理高阶训练营》

对课程有意向的同学

添加课程顾问小姐姐微信

报名、课程咨询

????????????

02部分项目作业

课程设计紧密围绕学术界最新进展以及工业界的需求,涵盖了所有核心知识点,并且结合了大量实战项目,培养学员的动手能力,解决问题能力。

问答系统

从零开始搭建一个完整的问答系统。给定一个语料库(问题和答案对),对于用户的输入需要返回最适合的答案。涉及到的模块:

1. 对于用户的输入需要做拼写纠错,这部分会用到语言模型

2. 之后对输入做文本的预处理,过滤等操作。

3. 把文本转换成向量形式,这里需要用到tf-idf, word2vec等相关的技术。

4. 针对于语料库,为了提升效率需要创建倒排表。

5. 基于相似度的计算来获得最优的答案。

情感分析系统

基于给定数据,来搭建一个完整的情感分析系统。项目涉及到的模块:

1. 数据的预处理

2. 特征工程,这部分是本项目的核心。

3. 监督学习模型的选择与调参。调参的过程需要尝试不同的优化策略。

知识图谱系统

利用非结构化数据来搭建知识图谱。项目涉及到的模块:

1. 从非结构化数据中抽取实体,以及词典库的构建

2. 关系的抽取(指定的关系)

3. 实体统一以及实体消歧。

4. 知识图谱的构建以及查询

对话系统中的NLU

基于给定的对话数据来构建NLU识别部分,并结果用于聊天机器人中。 项目涉及到的模块:

1. 文本特征的提取

2. 搭建CRF模型来识别关键词

3. 搭建LSTM-CRF模型来识别关键词。

机器翻译系统

基于给定数据,来搭建一个完整的情感分析系统。项目涉及到的模块:

1. 数据的预处理

2. 特征工程,这部分是本项目的核心。

3. 监督学习模型的选择与调参。调参的过程需要尝试不同的优化策略。

任务导向型聊天机器人

搭建一个完整的聊天机器人,用来服务搜索餐厅。项目涉及到的模块:

1. 文本预处理

2. 意图识别和关键信息抽取

3. 对于每一个意图设计对话管理状态机

4. 设计上下文处理的方法

5. 对话生成模块

6. 处理一些常见的boundary case。

03直播授课,现场推导演示

区别于劣质的PPT讲解,导师全程现场推导,让你在学习中有清晰的思路,深刻的理解算法模型背后推导的每个细节。更重要的是可以清晰地看到各种模型之间的关系!帮助你打通六脉!

▲源自:CRF与Log-Linear模型讲解

▲源自:CRF与Log-Linear模型讲解

▲源自:Convex Optimization 讲解

▲源自:Convergence Analysis 讲解

不管你在学习过程中遇到多少阻碍,你都可以通过以下4种方式解决:

1、直接在线问导师;

2、记录到共享文档中,每日固定时间的直播答疑;

3、学习社群中全职助教,随时提问答疑

4、共同的问题在Review Session里面做讲解

注:每次答疑,班主任都会进行记录,以便学员实时查阅。

04课程适合谁?

  • 对机器学习算法有基础了解,具备编程能力;

  • 对数据结构与算法比较熟悉;

  • 想申请国外名校AI相关专业的硕士/博士;

  • 已从事NLP领域工作,想要升职加薪;

  • 想加入顶级AI公司;

05每周课程安排

采用直播的授课方式,一周4-5次的直播教学, 包括2次的main lectures, 1-2次的discussion session (讲解某一个实战、必备基础、案例或者技术上的延伸), 1次的paper reading session (每周会assign一篇必备论文,并且直播解读)。教学模式上也参考了美国顶级院校的教学体系。以下为其中一周的课程安排,供参考。 

每周一次的Review Session, 老师提前一周给出几个备选主题,由学生进行投票选择最心仪的主题,每周三次。

06你的必备挑战

1.编写一些技术类文章

通过在知乎上发表相关技术文章进行自我成果检验,同时也是一种思想碰撞的方式,导师会对发表的每一篇文章写一个详细的评语。万一不小心成为一个大V了呢?虽然写文章的过程万分痛苦,学习群里半夜哀嚎遍野,但看一看抓着头发写出来的文章结果还是非常喜人的!看着自己收获的点赞数,大家都默默地感谢起导师们的无情!

这种满满的成就感,让大家一篇接一篇写了下去!

个个都立刻变身成了知乎大牛~

2.Project项目

除了文章,算法工程师的立命根本--项目代码,导师更是不会放过的。每次在Gitlab上布置的作业,导师们都会带领助教团队会予以详细的批改和反馈。并逼着你不断的优化!

07 训练营导师

看了这么多,是不是非常崇拜设计出如此地狱式学习计划的大牛,那就来正式认识一下这位训练营中人人听了都闻风丧胆,但又让人崇拜+喜爱+欲罢不能的训练营大魔头:

李文哲

NLP、知识图谱领域专家

美国南加州大学博士,曾任凡普金科(爱钱进)首席科学家,美国亚马逊/高盛高级工程师,AI量化投资公司首席科学家兼投资总监。在AAAI, KDD, AISTATS等顶会上发表过15篇以上论文,其中3篇获得Best Paper Award,累计数百次引用。

在被大魔头们折磨了多个日日夜夜后,大家不但没有放弃学习,而且很快乐地学习着。来听听大家的心声吧:

这两天群里更是捷报连连。我们前三期项目的已经有多名学员被一线AI企业录取,还有通过二面、三面等待着offer。相信未来几周我们将会受到更多的好消息!

随便截了几个学员反馈,看看他们有多爱这个机智又严苛的大魔头:

我确定了我们的魔鬼训练营没有误人子弟,我们的课程真的帮助到大家实质的技能提升或帮助大家拿到offer。

这次我们迎来了第六期NLP的招生,千万不要觉得这是一个对标其他线上课程的普通的训练营。由于内容的专业性以及深度,在过去吸引了大量的全球顶级名府的学员,这里不乏来自斯坦福、UCSD、USC、哥大、HKUST、爱丁堡等世界名府的学生;在这里,你不仅可以享受到通往顶尖人才的快乐、也可以结识志同道合的AI从业者以及未来的科学家。 

08报名须知

1、本课程为收费教学。

2、本期仅招收50个名额。

3、品质保障!正式开课后7天内,无条件全额退款。

4、学习本课程需要具备一定的AI基础。

●●●

为AI从业者/研究生/研究员专门定制

全网唯一《NLP自然语言处理高阶训练营》

对课程有意向的同学

添加课程顾问小姐姐微信

报名、课程咨询

????????????

### Relaxation Algorithm and Goal Counting The relaxation algorithm is a fundamental concept used primarily in graph algorithms, such as Dijkstra's shortest path or Bellman-Ford algorithms. The primary purpose of the relaxation process involves iteratively improving estimates on distances between nodes until they reach their optimal values[^1]. In this context, **goal counting** refers to tracking how many times specific conditions are met during these iterations. In programming terms, when implementing relaxation techniques within an algorithm like Dijkstra’s: - A distance array `dist[]` stores tentative distances from source node(s). - For each edge `(u,v)` with weight `w`, check whether relaxing it improves current known minimums. Here is Python pseudocode demonstrating basic principles behind applying relaxations while maintaining counts per iteration step: ```python import math def dijkstra_with_count(graph, start_node): n = len(graph) dist = [math.inf] * n # Initialize all distances as infinite initially count = [0] * n # Track number of updates (counts) made at every vertex parent = [-1]*n # To store reconstructed paths later if needed visited = set() # Keep track which vertices already processed fully once before finalizing them permanently pq = [(0,start_node)] # Priority queue initialized containing only starting point pair value zero cost plus itself index position inside list structure above defined earlier named 'graph' dist[start_node]=0 # Distance from self should always be exactly equal to nothingness i.e., Zero! while pq: curr_dist,node=heapq.heappop(pq) if node not in visited: # Only proceed further ahead upon encountering unvisited ones exclusively hereafter... visited.add(node) for neighbor,cost_to_neighbor in enumerate(graph[node]): new_distance_through_this_edge=curr_dist + cost_to_neighbor if new_distance_through_this_edge<dist[neighbor]: dist[neighbor]=new_distance_through_this_edge heapq.heappush(pq,(new_distance_through_this_edge ,neighbor)) parent[neighbor]=node count[neighbor]+=1 # Increment counter whenever we perform successful update operation via any particular pathway leading towards destination target location under consideration currently being analyzed now... return {"Distance":dist,"Parent":parent,"Count_of_Relaxations":count} ``` This code snippet demonstrates both the application of the relaxation technique alongside keeping tally (`count`) regarding how often certain edges contribute toward reducing overall computed costs throughout execution phases progressively over time steps sequentially executed one after another continuously without interruption whatsoever!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值