| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 11298 | Accepted: 5130 |
Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int N,M;
int cost[4000];
int weight[4000];
int f[4000*400];
void init(int n)
{
for(int i=1;i<=n;i++)
{
cin>>cost[i]>>weight[i];
}
}
void zeroonepack(int c,int w)
{
for(int v=M;v>=c;v--)
{
f[v]=max(f[v],f[v-c]+w);
}
}
int main()
{
cin>>N>>M;
init(N);
memset(f,0,sizeof(f));
for(int i=1;i<=N;i++)
{
zeroonepack(cost[i],weight[i]);
}
cout<<f[M]<<endl;
return 0;
}
2277

被折叠的 条评论
为什么被折叠?



