Logistic Regression(逻辑回归)基本原理与学习总结

逻辑回归原理

逻辑回归是一种广义线性模型,判别一个模型是否是线性的,可通过判别分界面是否是线性来判断的,逻辑回归的分界面是线性的。逻辑回归解决的是分类问题,由条件概率分布P(Y|X)表示,通过引入sigmoid函数,用于表示输出值的概率。

构造广义线性模型(Constructing GLMs)

要构建广义线性模型,我们要基于以下三个假设:

  1. 给定特征属性和参数后,的条件概率服从指数分布族,即
  2. 预测的期望,即计算。 #h(x) = E[y|x]
  3. 之间是线性的,即

 由于逻辑回归解决的是二分类问题,可以选择伯努利分布来构建逻辑回归的模型。

  exponential family(指数族)指出:如果一类分布(a class of distribution)属于exponential family,那么它能写成如下形式:
p(y;\eta )=b(y)exp(\eta ^{T}T(y)-a(\eta ))

 伯努利分布可以写成:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值