PTA数据结构-06-图1 列出连通集

本文详细解析了图的深度优先搜索(DFS)和广度优先搜索(BFS)算法,通过具体实例展示了如何使用这两种方法遍历无向图,找出所有连通集,并提供了完整的Java代码实现。

一、题目

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v​1​​ v​2​​ ... v​k​​ }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

 

二、解答

import java.util.*;

public class Main{
    static ArrayList<Integer> stack = new ArrayList<>();
    static int index = -1;
    static ArrayList<Integer> queue = new ArrayList<>();
    static int front = -1, rear = -1;

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int[][] map = creatMap(sc);
        printAllRes(map);
    }
    public static void printAllRes(int[][] map){
        int nodeNum = map.length;
        int[] visited = new int[nodeNum];
        for (int i = 0; i < nodeNum; i++) {
            if (visited[i] == 0) System.out.println(DFS(i, visited, map));
        }
        visited = new int[nodeNum];
        for (int i = 0; i < nodeNum; i++) {
            if (visited[i] == 0) System.out.println(BFS(i, visited, map));
        }

    }
    public static String DFS(int node, int[] visited, int[][] map){
        String res = "";
        int nodeNum = map.length;
        while(node != -1) {
            //某个点可能与多个点相邻,被多次压入堆栈
            if(visited[node] == 1) { node = pop(); continue;}
            //从小到大输出,因此避免倒序
            for (int i = nodeNum - 1; i >= 0; i--) {
                if (map[node][i] != 0 && visited[i] == 0) push(i);
            }
            visited[node] = 1;
            res += node + " ";
            node = pop();
        }
        return "{ " + res.trim() + " }";
    }
    public static String BFS(int node, int[] visited, int[][] map){
        String res = "";
        int nodeNum = map.length;
        while(node != -1) {
            //某个点可能与多个点相邻,被多次压入堆栈
            if(visited[node] == 1) { node = outQue(); continue;}
            for (int i = 0; i < nodeNum; i++) {
                if (map[node][i] != 0 && visited[i] == 0) inQue(i);
            }
            visited[node] = 1;
            res += node + " ";
            node = outQue();
        }
        return "{ " + res.trim() + " }";
    }

    public static int[][] creatMap(Scanner sc){
        int nodeNum = sc.nextInt();
        int lineNum = sc.nextInt();
        int [][] map = new int[nodeNum][nodeNum];
        for (int i = 0; i < lineNum; i++) {
            int node1 = sc.nextInt();
            int node2 = sc.nextInt();
            map[node1][node2] = 1;
            map[node2][node1] = 1;
        }
        return map;
    }
    public static void push(int num){
        stack.add(num);
        index++;
    }
    public static int pop(){
        if (index < 0) return -1;
        return stack.remove(index--);
    }
    public static void inQue(int num){
        queue.add(num);
        front++;
    }
    public static int outQue(){
        if (rear >= front) return -1;
        return queue.get(++rear);
    }
}

思路:

  1. 考虑图的保存和遍历:二维数组
  2. DFS:深度遍历过程,将邻近点压入堆栈
  3. BFS:宽度遍历过程,将邻近点压入队列
  4. 某个点可能与多个点相邻,被多次压入堆栈,只处理一次

思考:

  1. 很多时候递归可以用堆栈来解决,比如DFS
  2. 尾递归可以用while循环来解决
### 关于PTA平台上的连通集实现 #### 一、连通集的概念及其意义 在一个无向中,如果任意两个顶点之间都存在一条路径相连,则称这个为连通。而连通分量是指一个非连通中的极大连通子[^1]。 为了在程序设计竞赛或者实际开发中解决连通性问题,通常会采用并查集(Union-Find Set)、深度优先搜索(DFS)或广度优先搜索(BFS)来查找和处理这些连通分量。 --- #### 二、数据结构的选择与定义 针对连通集的实现,常见的两种方式如下: ##### 1. 并查集(Disjoint Set Union, DSU) 并查集是一种用于管理集合的数据结构,支持快速查询某个元素属于哪个集合以及合并两个集合的功能。其核心操作包括 `find` 和 `union`。 ###### 定义: ```c++ class DisjointSet { private: vector<int> parent; public: DisjointSet(int size) : parent(size) { for (int i = 0; i < size; ++i) { parent[i] = i; } } int find_set(int x) { // 路径压缩优化 if (parent[x] != x) { parent[x] = find_set(parent[x]); } return parent[x]; } void union_set(int x, int y) { // 按秩合并优化省略 int fx = find_set(x); int fy = find_set(y); if (fx != fy) { parent[fy] = fx; } } }; ``` 通过上述代码,我们可以高效地维护一组不相交的集合,并能迅速判断两节点是否在同一连通集中[^2]。 --- ##### 2. 使用邻接表/邻接矩阵配合 DFS 或 BFS 另一种方法是利用的存储形式——邻接表或邻接矩阵,结合深度优先搜索(DFS)或广度优先搜索(BFS),逐一访问未被标记过的节点,从而找到所有的连通分量。 ###### 邻接表定义: ```cpp #include <vector> using namespace std; // 创建邻接表 void add_edge(vector<vector<int>>& adj_list, int u, int v) { adj_list[u].push_back(v); adj_list[v].push_back(u); // 如果是有向则去掉这一句 } ``` ###### DFS 实现: ```cpp void dfs(const vector<vector<int>>& graph, vector<bool>& visited, int node) { visited[node] = true; for (const auto& neighbor : graph[node]) { if (!visited[neighbor]) { dfs(graph, visited, neighbor); } } } int count_connected_components_dfs(const vector<vector<int>>& graph) { int n = graph.size(); vector<bool> visited(n, false); int components = 0; for (int i = 0; i < n; ++i) { if (!visited[i]) { dfs(graph, visited, i); components++; } } return components; } ``` ###### BFS 实现: ```cpp #include <queue> int bfs_count_connected_components(const vector<vector<int>>& graph) { int n = graph.size(); vector<bool> visited(n, false); queue<int> q; int components = 0; for (int i = 0; i < n; ++i) { if (!visited[i]) { q.push(i); visited[i] = true; while (!q.empty()) { int current_node = q.front(); q.pop(); for (auto& neighbor : graph[current_node]) { if (!visited[neighbor]) { visited[neighbor] = true; q.push(neighbor); } } } components++; } } return components; } ``` 以上代码展示了如何基于邻接表使用 DFS/BFS 来统计连通分量的数量[^3]。 --- #### 三、具体应用场景分析 当面对大规模稀疏时,推荐使用 **邻接表+DFS/BFS** 方法;而对于稠密或需要频繁执行连接性和断开操作的情况,应考虑使用 **并查集** 结构[^4]。 --- ### 性能对比总结表格 | 特性 | 并查集 | DFS / BFS | |-------------------|----------------------------|---------------------------| | 时间复杂度 | O(α(N)) | O(V+E),其中 α 是反阿克曼函数 | | 空间复杂度 | 较低 | 取决于递归栈深或队列大小 | | 是否适合动态更新 | 支持动态添加边 | 不易扩展至动态场景 | --- #### 四、注意事项 - 输入验证:确保输入的颜色种类不超过指定范围,可以通过 `std::set` 判断是否存在非法颜色。 - 存储效率:对于大型,建议使用动态分配内存的方式创建邻接表而非固定长度的大数组,以防止堆栈溢出。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值