[poj2975]Nim

Nim
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 2835 Accepted: 1232

Description

Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removingone or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.

A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1,k2, …,kn stones respectively; in such a position, there arek1 +k2 + … + kn possible moves. We write eachki in binary (base 2). Then, the Nim position is losing if and only if, among all theki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if thexor of theki’s is 0.

Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

 111
1011
1101
 

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, supposek3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move whenk1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

Input

The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤n ≤ 1000. On the next line, there are n positive integers, 1 ≤ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case withn = 0 and should not be processed.

Output

For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input

3
7 11 13
2
1000000000 1000000000
0

Sample Output

3
0

Source

 
****************************************************************************************************************************************************************
 
题意:
只是求的不是简单的是否有必胜策略,而是要求先手第一步有几种情况是必胜策略.
只要求出 sum=a[1] xor a[2] xor...xor a[n],
若sum=0,则先手必输;
若sum>0,先手可以进行操作是sum = 0,到达一个先手必输态,操作如下:
    设 a[i]' = sum xor a[i], 若a[i]' < a[i], 那么可以把a[i]变成a[i], 此时 sum'=sum xor a[i] xor a[i]'=0

 

 

 
 
内容概要:本文详细介绍了计算机求职面试的内容、技巧和备战策略,涵盖技术面、项目面、行为面三大部分。技术面重点在于算法和计算机基础知识,包括操作系统、网络、数据库等方面,并强调掌握高频算法题的解题方法和技巧。项目面要求候选人能够提炼项目的深度与亮点,运用STAR法则结构化描述项目经历,突出技术难点和解决方案。行为面主要考察候选人的软实力,如沟通能力、团队协作和解决问题的能力。高效备战策略方面,建议分阶段复习,优化简历,利用各种资源进行模拟面试。实战技巧部分提供了沟通心态管理、白板代码实战以及薪资谈判的具体指导。最后,文章还指出了常见误区,如盲目刷题、过度包装项目和忽视非技术问题的回答。 适合人群:计算机专业的应届毕业生和有工作经验的求职者,特别是希望进入互联网大厂、外企或独角兽企业的技术人员。 使用场景及目标:①帮助求职者理解计算机岗位面试的核心内容和技术要求;②提供系统的备考计划和资源推荐,提高面试准备效率;③传授面试实战技巧,增强求职者的自信心和表现力;④提醒求职者避免常见误区,确保面试过程顺利。 阅读建议:本文内容详实,建议读者按照文中提供的步骤逐步实施,结合自身实际情况调整策略。同时,注重实践练习,多参与模拟面试,不断总结经验教训,以提升面试成功率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值