[BZOJ1914][Usaco2010 OPen]Triangle Counting 数三角形

[Usaco2010 OPen]Triangle Counting 数三角形

Description
在一只大灰狼偷偷潜入Farmer Don的牛群被群牛发现后,贝西现在不得不履行着她站岗的职责。从她的守卫塔向下瞭望简直就是一件烦透了的事情。她决定做一些开发智力的小练习,防止她睡着了。想象牧场是一个X,Y平面的网格。她将N只奶牛标记为1…N (1 <= N <= 100,000),每只奶牛的坐标为X_i,Y_i (-100,000 <= X_i <= 100,000;-100,000 <= Y_i <= 100,000; 1 <= i <=N)。然后她脑海里想象着所有可能由奶牛构成的三角形。如果一个三角形完全包含了原点(0,0),那么她称这个三角形为“黄金三角形”。原点不会落在任何一对奶牛的连线上。另外,不会有奶牛在原点。给出奶牛的坐标,计算出有多少个“黄金三角形”。顺便解释一下样例,考虑五只牛,坐标分别为(-5,0), (0,2), (11,2), (-11,-6), (11,-5)。下图是由贝西视角所绘出的图示。
Input
第一行:一个整数: N 第2到第N+1行: 每行两个整数X_i,Y_i,表示每只牛的坐标
Output
* 第一行: 一行包括一个整数,表示“黄金三角形的数量”
Sample Input
5
-5 0
0 2
11 2
-11 -6
11 -5
Sample Output
5

Code
我们利用补集转化思想,考虑不包含原点的三角形个数.
任取一点 P ,原点与P的所在直线 l 将整个平面划分为两个半平面,而对于任意其他两点A,B,若 A,B,PAB ,这样每个不包含远点的三角形会算两次,因此我们可以只算一个方向的半平面.
基于此,我们对所有点按极角排序,利用 twopointers 扫描解决问题

Solution

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = (l); i <= (r); i++)
#define per(i, r, l) for (int i = (r); i >= (l); i--)
#define MS(_) memset(_, 0, sizeof(_))
#define MP make_pair
#define PB push_back
#define debug(...) fprintf(stderr, __VA_ARGS__)
template<typename T> inline void read(T &x){
    x = 0; T f = 1; char ch = getchar();
    while (!isdigit(ch)) {if (ch == '-') f = -1; ch = getchar();}
    while (isdigit(ch))  {x = x * 10 + ch - '0'; ch = getchar();}
    x *= f;
}

typedef long long ll;
const double eps = 1e-7;
const int N = 111111;

struct Vec{
    double x, y, angle;
    Vec() {}
    Vec(double _x, double _y) : x(_x), y(_y) {angle = atan2(y, x);}
    inline void cal_angle() {angle = atan2(y, x);}
};
inline Vec operator + (const Vec &a, const Vec &b) {return Vec(a.x+b.x, a.y+b.y);}
inline Vec operator - (const Vec &a, const Vec &b) {return Vec(a.x-b.x, a.y-b.y);}
template<typename T> inline Vec operator * (const Vec &a, T b) {return Vec(a.x*b, a.y*b);}
template<typename T> inline Vec operator * (T a, const Vec &b) {return Vec(a*b.x, a*b.y);}
inline Vec operator / (const Vec &a, double b) {return Vec(a.x/b, a.y/b);}
inline double dot(const Vec &a, const Vec &b){return a.x*b.x + a.y*b.y;}
inline double cross(const Vec &a, const Vec &b){return a.x*b.y - a.y*b.x;}

typedef Vec Poi;
inline bool angle_cmp(Poi a, Poi b) {return a.angle < b.angle;}
inline bool gt0(double x) {return x-eps>0;}

int n;
Poi a[N];
ll ans;

int main(){
    read(n);
    rep(i, 1, n) {read(a[i].x); read(a[i].y); a[i].cal_angle();}
    sort(a+1, a+1+n, angle_cmp);

    int last = 1, cnt = 0;
    rep(i, 1, n){
        while ((last%n+1 != i) && gt0(cross(a[i], a[last%n+1]))) last++, cnt++;
        ans += 1ll * cnt * (cnt-1) / 2;
        cnt--;
    }

    printf("%lld\n", 1ll*n*(n-1)*(n-2)/6 - ans);
    return 0;
}
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整 $n$ 和 $m$,表示节点和边。 接下来 $m$ 行,每行包含三个整 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整,表示最短路径的长度最多会增加多少。 据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值