不能求二阶导的metrics,不是好的objective?!

请添加图片描述

请添加图片描述接上一篇。

今天我们要分析 MAPE 这个函数在论文中的使用。以此为契机,适当深入一点机器学习的原理,讲以下两个知识点:

1. 损失函数和度量函数
2. XGBoost模型,因子数据是否要标准化

损失函数与度量函数

在机器学习中,有两类重要的函数,一类是目标函数(objective function),又称损失函数(loss function);一类是度量函数(metrics)

75%

损失函数用于模型训练。在训练过程中,通过梯度下降等方法,使得损失函数的值不断减小,直到无法继续下降为止,模型就训练完成。

训练完成之后的模型,将在test数据集上进行测试,并将预测的结果与真实值进行对比。为了将这个对比过程数值化,我们就引入了度量函数(metrics)

在sklearn中,提供了大量的损失函数和度量函数。下图列举了部分Sklearn提供的损失函数和度量函数:

可以看出,度量函数的个数远多于损失函数,这是为什么呢?

在论文中,论文作者并没有披露他通过xgboost训练的具体过程,只是说直接使用了xgboost的database,这个表述有点奇怪,我们可以理解为在参数上使用了XGBoost的默认值好了。但是他重点提到了使用MAPE,从过程来看,是在把MAPE当成度量函数进行事后评估。

在XGBoost中,如果没有特别指定目标函数,那么默认会使用带正则惩罚的RMSE(rooted mean square error)函数。RMSE也可以作为度量函数,在论文中,作者没有使用RMSE作为度量函数,而是选择了MAPE(mean absolute percentage error),原因何在?如果MAPE在这个场景下比RMSE更好,又为何不在训练中使用MAPE?

看上去无论目标函数也好,度量函数也好,都要使得预测值与真实值越接近越好。既然都有这个特性,为什么还需要区分这两类函数呢?

要回答这些问题,就要了解XGBoost的训练原理,核心是:它是如何求梯度下降的。

XGBoost:二阶泰勒展开

XGBoost是一种提升(Boosting)算法,它通过多个弱学习器叠加,构成一个强学习器。每次迭代时,新的树会修正现有模型的残差,即预测值与真实值之间的差异。这个差异的大小,就由目标函数来计算。

在XGBoost中,多个弱学习器的叠加采用了加法模型,即最终的预测是所有弱学习器输出的加权和。这种模型允许我们使用泰勒展开来近似损失函数,从而进行高效的优化。

XGBoost对目标函数的优化是通过泰勒二阶展开,再求二阶导来实现的。使用二阶导数,XGBoost可以实现更快速的收敛,因为它不仅考虑了梯度的方向,还考虑了损失函数的形状。

f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 f(x)f(a)+f(a)(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量化风云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值