OpenPCDet train.py 代码

本文是关于OpenPCDet这个用于点云目标检测的开源项目的理解和学习,主要聚焦于train.py脚本的分析和作者的个人笔记。

OpenPCDet 是一个开源的、用于点云目标检测的项目,记录一下看完train.py之后的笔记

分析服务器报错Traceback (most recent call last): File "/home/hj/OpenPCDet_TJ4D/tools/train.py", line 229, in <module> main() File "/home/hj/OpenPCDet_TJ4D/tools/train.py", line 175, in main train_model( File "/home/hj/OpenPCDet_TJ4D/tools/train_utils/train_utils.py", line 173, in train_model accumulated_iter = train_one_epoch( File "/home/hj/OpenPCDet_TJ4D/tools/train_utils/train_utils.py", line 56, in train_one_epoch loss, tb_dict, disp_dict = model_func(model, batch) File "/home/hj/OpenPCDet_TJ4D/tools/../pcdet/models/__init__.py", line 42, in model_func ret_dict, tb_dict, disp_dict = model(batch_dict) File "/home/hj/anaconda3/envs/pcdet/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/hj/OpenPCDet_TJ4D/tools/../pcdet/models/detectors/pointpillar.py", line 11, in forward batch_dict = cur_module(batch_dict) File "/home/hj/anaconda3/envs/pcdet/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/hj/OpenPCDet_TJ4D/tools/../pcdet/models/backbones_3d/vfe/pillar_vfe.py", line 240, in forward File "/home/hj/anaconda3/envs/pcdet/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/hj/OpenPCDet_TJ4D/tools/../pcdet/models/backbones_3d/vfe/pillar_vfe.py", line 73, in forward File "/home/hj/anaconda3/envs/pcdet/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/hj/anaconda3/envs/pcdet/lib/python3.9/site-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/home/hj/anaconda3/envs/pcdet/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/hj/anaconda3/envs/pcdet/lib/python3.9/site-packages/torch/nn/modules/batchnorm.py", line 168, in forward return F.batch_norm( File "/home/hj/anaconda3/envs/pcdet/lib/python3.9/site-packages/torch/nn/functional.py", line 2438, in batch_norm return torch.batch_norm( RuntimeError: running_mean should contain 32 elements not 64
06-14
epochs: 0%| | 0/80 [00:00<?, ?it/s] Traceback (most recent call last): | 0/3740 [00:00<?, ?it/s] File "tools/train.py", line 201, in <module> main() File "tools/train.py", line 153, in main train_model( File "/home/lxcd/cudnn_samples_v8/mnistCUDNN/OpenPCDet/tools/train_utils/train_utils.py", line 111, in train_model accumulated_iter = train_one_epoch( File "/home/lxcd/cudnn_samples_v8/mnistCUDNN/OpenPCDet/tools/train_utils/train_utils.py", line 25, in train_one_epoch batch = next(dataloader_iter) File "/home/lxcd/miniconda3/envs/marcnn/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 521, in __next__ data = self._next_data() File "/home/lxcd/miniconda3/envs/marcnn/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1203, in _next_data return self._process_data(data) File "/home/lxcd/miniconda3/envs/marcnn/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1229, in _process_data data.reraise() File "/home/lxcd/miniconda3/envs/marcnn/lib/python3.8/site-packages/torch/_utils.py", line 434, in reraise raise exception TypeError: Caught TypeError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/lxcd/miniconda3/envs/marcnn/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop data = fetcher.fetch(index) File "/home/lxcd/miniconda3/envs/marcnn/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/lxcd/miniconda3/envs/marcnn/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 49, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/lxcd/cudnn_samples_v8/mnistCUDNN/OpenPCDet/pcdet/datasets/kitti/kitti_dataset.py", line 115, in __getitem__ data_dict = self.point_feature_encoder.encode(data_dict) File "/home/lxcd/cudnn_samples_v8/mnistCUDNN/OpenPCDet/pcdet/utils/point_feature_encoder.py", line 39, in encode encoded_feature = self.encoder_dict[feature_name](points[..., idx:idx+1]) TypeError: unhashable type: 'slice'
10-23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值