深度学习笔记——常见的Transformer位置编码

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍3种常见的Transformer位置编码——正弦/余弦位置编码(sin/cos)、基于频率的二维位置编码(2D Frequency Embeddings)、旋转式位置编码(RoPE)

在这里插入图片描述


Transformer中常见的编码方式

  • 自注意力机制(Self-Attention)本身不具备任何顺序或空间位置信息。
  • 为此,需要显式地将位置信息嵌入输入特征,以确保模型能够感知特征间的空间或时间关系。

正弦/余弦位置编码(Sinusoidal Positional Encoding)

在 Transformer 的原始论文(Vaswani et al., 2017)中提出的,最原始的位置编码。正弦/余弦位置编码也叫1D Frequency Embeddings,通过频率函数将每个位置嵌入到特征空间中。

公式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值