活动选择问题——贪心算法与动态规划

本文探讨了活动选择问题的两种解决方案——动态规划与贪心算法。通过定义最优子结构,介绍了如何利用动态规划解决该问题,并给出了递归式及实现代码。此外,还对比了动态规划与贪心算法的区别,讲解了贪心算法的应用场景及其递归形式。

最优子结构

设Sij表示活动i开始时间后且活动j时间结束前的活动集,假设有一个最大兼容活动子集Aij,其中包括了活动k。由于最优解包含活动k,可以得到两个子问题:寻找Sik以及Skj中的兼容活动子集。原问题解变为:Aij = Aik ∪k ∪Akj。

有了最优子结构,意味着可以用动态规划解。

如果用c[i][j] 表示集合Sij的最优解的大小,则可得递归式:

​ c[i][j] = c[i][k] + 1 + c[k][j]

最优解是c[0][N+1]。

当然如果不知道最优解包含哪一个活动k的话就必须要考察所有的选择k,于是最优解:

​ c[i][j] = max( c[i][k] + 1 + c[k][j] ) (Sij 不空) (k = i+1….j-1 且k和前后前后活动兼容)

​ = 0 (Sij 空)

/*测试数据
    注意Sij表示的意义是活动i结束后,活动j结束前的兼容活动,所以是双开区间
    int s[] = { 0,1,3,0,5,3,5,6,8,8,2,12,_CRT_INT_MAX };
    int f[] = { 0,4,5,6,7,9,9,10,11,12,14,16,_CRT_INT_MAX };
*/
#define N 11
void dp_act(int s[], int f[])
{
    int i = 0;
    int c[N + 2][N + 2] = { 0 };
    for (int len = 2; len <= N+1; len++) {

        for (i = 0; i <= N -len+1; i++) {
            int j = i + len;
            //Sij不为空
            if (f[i] <= s[j]) {
                int maxn = -1;
                for (int k = i+1 ; k <j; k++) {
                    if (s[k] >= f[i] && f[k] <= s[j]) {
                        maxn = c[i][k] + c[k][j] + 1;
                        if (maxn > c[i][j]) {
                            c[i][j] = maxn;
                        }
                    }
                }

            }
        }
    }
}

递归贪心形式

动归形式考察了递归式中所有选择k的过程,如果使用贪心选择出最早结束的活动,就剩下一个子问题待解决。

贪心算法和动归的不同:

动归的每一步都要进行一次选择,但选择依赖于子问题的解。因此通常使用自底向上求解,先求较小子问题,再求较大子问题。在贪心算法中,总是选择当时最佳的选择,剩下唯一待解的子问题,子问题不依赖于任何将来的选择。

因此,与动归先求解子问题才能进行第一次选择不同,贪心在进行第一次选择前不用求任何子问题。

当然,我们需要证明每次贪心选择能生成全局最优解。

int ret[10];
int ans = 0;
void recur_act_select(int s[], int f[], int k, int n)
{
    int m = k + 1;  //m是每次第一个结束的活动的下标
    while (m <= n && s[m] < f[k]) {
        m++;
    }
    if (m <= n) {
        ret[ans++] = m;
        return recur_act_select(s, f, m, n);
    }
    return;
}

迭代

尾递归改为迭代,关键是每次计算结果参与下次计算。

//尾递归改成循环
void gred_act_select(int s[], int f[], int n)
{
    int k = 0;
    int m = 0;
    int ret[10] = { 0 };
    int ans = 0;
    while (k <= n) {
        if (s[k] >= f[m]) {
            ret[ans++] = k;
            m = k;
        }
        k++;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值