二叉树基础详解
二叉树的种类
满二叉树
满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
完全二叉树
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。
二叉搜索树
前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树。
●若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
●若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
●它的左、右子树也分别为二叉排序树
平衡搜索二叉树
平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
二叉树的储存方式
二叉树可以链式存储,也可以顺序存储。
但我们一般都用链式储存
那么链式存储方式就用指针, 顺序存储的方式就是用数组。
顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。
二叉树的遍历方式
二叉树主要有两种遍历方式:
深度优先遍历:先往深走,遇到叶子节点再往回走。
广度优先遍历:一层一层的去遍历。
这两种遍历是图论中最基本的两种遍历方式,后面在介绍图论的时候 还会介绍到。
那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:
深度优先遍历
●前序遍历(递归法,迭代法)
●中序遍历(递归法,迭代法)
●后序遍历(递归法,迭代法)
广度优先遍历
层次遍历(迭代法)
在深度优先遍历中:有三个顺序,前中后序遍历, 有同学总分不清这三个顺序,经常搞混,我这里教大家一个技巧。
这里前中后,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。
看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式
●前序遍历:中左右
●中序遍历:左中右
●后序遍历:左右中
大家可以对着如下图,看看自己理解的前后中序有没有问题。
最后再说一说二叉树中深度优先和广度优先遍历实现方式,我们做二叉树相关题目,经常会使用递归的方式来实现深度优先遍历,也就是实现前中后序遍历,使用递归是比较方便的。
二叉树的定义(Python)
class TreeNode:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
二叉树的深度优先遍历(递归):
前序遍历(中左右)
力扣144. 二叉树的前序遍历
class Solution:
def preorderTraversal(self, root: Optional[TreeNode])-> List[int]:
result = [] #保存结果
def transfer(root):
if root==None:
return
result.append(root.val) #前序
transfer(root.left) #左
transfer(root.right) #右
transfer(root)
return result