#沿着指定轴计算张量之和
from keras import backend as K
import numpy as np
import tensorflow as tf
a = np.arange(0 , 6).reshape(2 , 3)
print(a)
[[0 1 2]
[3 4 5]]
sum_a_keepdims = K.sum(a , axis=-1 , keepdims=True)
sum_a_nokeepdims = K.sum(a , axis=-1 , keepdims=False)
print(sum_a_keepdims.shape)
print(sum_a_nokeepdims.shape)
(2, 1)
(2,)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(sum_a_keepdims))
print(sess.run(sum_a_nokeepdims))
[[ 3]
[12]]
[ 3 12]
本文通过使用Keras和NumPy库,详细演示了如何沿指定轴计算张量之和,并对比了保持维度和不保持维度两种情况下的形状变化。通过具体代码实例,读者可以深入理解张量操作在深度学习中的应用。
4272

被折叠的 条评论
为什么被折叠?



