Q-学习,马克尔决策过程:强化学习

本文深入探讨了马尔可夫决策过程(MDP)的基础概念,结合Q-学习,通过一个简单的房间环境示例,解释了智能体如何通过非监督学习从未知环境中学习最佳路径。Q-学习的核心是智能体通过不断探索和更新Q矩阵来达到目标状态,其中 Gamma 参数平衡了即时奖励与未来奖励的权衡。随着训练的进行,Q矩阵会收敛,指示出到达目标状态的最优路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

马尔可夫决策过程

马尔可夫决策过程是基于马尔可夫过程理论的随机动态系统的最优决策过程。马尔可夫决策过程是序贯决策的主要研究领域。它是马尔可夫过程与确定性的动态规划相结合的产物,故又称马尔可夫型随机动态规划,属于运筹学中数学规划的一个分支。

马尔可夫决策过程是指决策者周期地或连续地观察具有马尔可夫性的随机动态系统,序贯地作出决策。即根据每个时刻观察到的状态,从可用的行动集合中选用一个行动作出决策,系统下一步(未来)的状态是随机的,并且其状态转移概率具有马尔可夫性。决策者根据新观察到的状态,再作新的决策,依此反复地进行。马尔可夫性是指一个随机过程未来发展的概率规律与观察之前的历史无关的性质。马尔可夫性又可简单叙述为状态转移概率的无后效性。状态转移概率具有马尔可夫性的随机过程即为马尔可夫过程。马尔可夫决策过程又可看作随机对策的特殊情形,在这种随机对策中对策的一方是无意志的。马尔可夫决策过程还可作为马尔可夫型随机最优控制,其决策变量就是控制变量

原文地址:http://mnemstudio.org/path-finding-q-learning-tutorial.htm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值