GCD is Funny

Problem Description

Alex has invented a new game for fun. There are nn integers at a board and he performs the following moves repeatedly:

  1. He chooses three numbers aabb and cc written at the board and erases them.
  2. He chooses two numbers from the triple aabb and cc and calculates their greatest common divisor, getting the number dd (dd maybe \gcd(a,b)gcd(a,b)\gcd(a,c)gcd(a,c) or \gcd(b, c)gcd(b,c)).
  3. He writes the number dd to the board two times.

It can be seen that after performing the move n-2n2 times, there will be only two numbers with the same value left on the board. Alex wants to know which numbers can left on the board possibly. Can you help him?

Input

There are multiple test cases. The first line of input contains an integer TT (1 \le T \le 100)(1T100), indicating the number of test cases. For each test case:

The first line contains an integer nn (3 \le n \le 500)(3n500) -- the number of integers written on the board. The next line contains nn integers: a_1, a_2, ..., a_na1,a2,...,an (1 \le a_i \le 10^6)(1ai106) -- the numbers on the board.

Output

For each test case, output the numbers which can left on the board in increasing order.

Sample Input
3
4
1 2 3 4
4
2 2 2 2
5
5 6 2 3 4
Sample Output
1 2
2
1 2 3





/*
求最大的共约数;
*/
#include<iostream>
#include<math.h>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=510;
int gcd(int a,int b)//最大公约数;
{
    if(b==0)
        return a;
    return gcd(b,a%b);
}
bool b[1000010];
int main()
{
    int t;
    cin>>t;
    int n,a[101];
    while(t--)
    {
        memset(b,0,sizeof(b));
        cin>>n;
        for(int i=1;i<=n;i++)
        {
            cin>>a[i];
            for(int j=1;j<i;j++)
            {
                int d=gcd(a[i],a[j]);
                b[d]=1;
            }
        }
        int flag=0;
        for(int i=1;i<=n;i++)
        {
            if(b[i])//公约数存在;
            {
                if(!flag)
                {
                    flag=1;
                    printf("%d",i);
                }
                else
                    printf(" %d",i);
            }
        }
        cout<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值