#127 Topological Sorting

本文介绍了一种基于深度优先搜索(DFS)实现的图的拓扑排序算法,并提供了具体的C++代码示例。该算法适用于有向无环图(DAG),能够找到至少一种合法的节点排序方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

Given an directed graph, a topological order of the graph nodes is defined as follow:

  • For each directed edge A -> B in graph, A must before B in the order list.
  • The first node in the order can be any node in the graph with no nodes direct to it.

Find any topological order for the given graph.

 Notice

You can assume that there is at least one topological order in the graph.

Example

For graph as follow:

picture

The topological order can be:

[0, 1, 2, 3, 4, 5]
[0, 2, 3, 1, 5, 4]
...
题目思路:

这题就是。。。topological sorting的算法之一:我用了dfs的code,实现的是链接的算法--topological sorting

Mycode (AC = 162ms):

/**
 * Definition for Directed graph.
 * struct DirectedGraphNode {
 *     int label;
 *     vector<DirectedGraphNode *> neighbors;
 *     DirectedGraphNode(int x) : label(x) {};
 * };
 */
class Solution {
public:
    /**
     * @param graph: A list of Directed graph node
     * @return: Any topological order for the given graph.
     */
    vector<DirectedGraphNode*> topSort(vector<DirectedGraphNode*> graph) {
        // write your code here
        vector<DirectedGraphNode*> ans;
        if (graph.size() == 0) return ans;
        
        set<int> visited;
        
        for (int i = 0; i < graph.size(); i++) {
            if (visited.find(graph[i]->label) == visited.end()) {
                topSort(ans, graph, visited, graph[i]);
            }
        }
        
        reverse(ans.begin(), ans.end());
        
        return ans;
    }
    
    void topSort(vector<DirectedGraphNode*>& ans,
                 vector<DirectedGraphNode*>& graph,
                 set<int>& visited,
                 DirectedGraphNode *node)
    {
        if (node == NULL || visited.find(node->label) != visited.end()) {
            return;
        }
        
        visited.insert(node->label);
        for (int i = 0; i < node->neighbors.size(); i++) {
            topSort(ans, graph, visited, node->neighbors[i]);
        }
        
        ans.push_back(node);
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值