AI专业面经(部分)
一、数学部分:
1.1 代数(Algebra)和分析(Analysis):复习基本的代数和微积分概念,如线性代数、微分、积分等。
1.1.1 Algebra
1.1.1.1 基础知识
Real Numbers include:
-
整数 Whole Numbers (like 0, 1, 2, 3, 4, etc)
-
有理数 Rational Numbers (like 3/4, 0.125, 0.333…, 1.1, etc )
-
无理数 Irrational Numbers (like π, √2, etc )
*Real Numbers can also be positive, negative or zero.
Imaginary Numbers(虚数) like √−1 (the square root of minus 1), Infinity(无穷大) is not a Real Number
Complete Induction Reasoning:
-
基础情形(Base Case): 首先,需要证明命题在某个初始值(通常是最小的自然数,如0或1)下成立。这个初始值通常被称为基础情形。
-
归纳假设(Inductive Hypothesis): 假设命题对某个自然数k成立,其中k是大于或等于基础情形的整数。这个假设通常称为归纳假设。
-
归纳步骤(Inductive Step): 在这一步,需要证明如果命题对k成立,那么它也对k+1成立。这个步骤通常被称为归纳步骤。
-
结论: 综合基础情形、归纳假设和归纳步骤,可以得出结论:命题对所有自然数成立。
Einführung komplexe Zahlen 复数
A Complex Number is a combination of a Real Number and an Imaginary Number. Imaginary Numbers when squared give a negative result.
1.1.1.2 Linear Algebra
Vektoren und Vektorräume 向量和向量空间
A vector space is a triple(V, F, f) consisting of:
1. An additive Abelian Group V.
2. A field F
1. A function f: F * V -> V called scalar multiplication
Vector满足associative law(结合律),distributive law(分配率),其中有scalar addition(标量)和vector addition(向量)加法
lineare Unabhängigkeit 线性独立性
A finite set of N(N>=1) vectors viv_{i}vi in a vector space V is said to be linearly dependent if there exits a set of scalars λN\lambda^NλN , not all zero, such that ∑j=1Nλjvj=0\sum^{N}_{j=1}\lambda^j v_{j}=0∑j=1Nλjvj=0
A set of N(N>=1) vectors that is not linearly dependent is said to be linearly independent.
Basis und Dimension 基和维数
A list of example of bases for vector spaces follows:
1)The set of N vectors Is linearly independent and constitutes a basis for CN, called the standard basis.
\2) If U22 denotes the vector space of all 22matrics with elements from the complex numbers C, then the four matrices
2748

被折叠的 条评论
为什么被折叠?



