机器学习之-knn-具体怎么实现与应用

1、定义:k-近邻算法算法采用测量不同特征值之间的距离方法进行分类。

--解释:比如要对一个电影分类,就是要把这个电影分为哪种题材的电影,比如是武侠题材还是爱情题材,用k-近邻方法去分类的话,首先得得到要分类的电影的特征值,分类是在特征空间上进行的。k-近邻不需要像其它机器学习算法那样有一个学习的过程,你只需要给出一大堆电影,然后分别找出这些电影的特征值,比如电影A中打斗场景的次数、接吻次数作为特征,找出所有电影的这些特征的特征值,这就可以了,当给出一个新的电影时,同样的,在这个电影里找出这两个特征的特征值,并计算这两个特征的特征值到前面提到的已经给出的电影集的特征值的距离,然后对这个距离进行排序,找到距离最近的k个特征值,并根据k个特征值对应的电影的标签(是武侠还是爱情)用多数表决的方法决定这个新电影时武侠还是爱情题材。

2、k-近邻算法的优缺点及适用范围:

优点:精度高、对异常值不敏感,无输入数据假定。

缺点:计算复杂度高、空间复杂度高

适用范围:数值型和标称型

3、k-近邻算法的一般流程:

a)收集数据:可以使用任何方法。意思是原始数据(未经过处理的)的采集。

b)准备数据:距离计算所需要的数值,最好是结构化的数据格式。意思是将采集到的数据加载到程序中,转变为算法可以使用的数据格式(结构)。具体的,就是获得每个样本的所有特征值及样本对应的标签。在这里需要注意一点,就是对所有特征都进行归一化。

c)分析数据:可以使用任何方法。具体的就是将所有特征值都展示出来,用图展示出来,从而可以分析特征值的分布以及哪些特征值比较有用。

d)训练算法:此步骤不适用于k-近邻算法。

e)测试算法:计算错误率。

f)使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

4、k-近邻算法的核心:

就是计算特征值之间的距离,然后选择距离最小的k个样本对应的标签,然后在k个标签里以多数表决的形式选出出现次数最多的标签作为输入的新的样本的标签。



### 关于头歌平台中KNN算法的机器学习教程实例 #### 头歌平台概述 头歌(Tougo)是一个专注于计算机科学教育的学习平台,提供丰富的在线课程资源和实践环境。对于机器学习领域的内容,尤其是像KNN这样经典的算法,通常会通过理论讲解、代码实现以及实际应用案例相结合的方式进行教学。 #### KNN算法简介 KNN(K-Nearest Neighbors)是一种基于实例的学习方法,既可用于分类也可用于回归分析。其核心思想是:给定一个测试样本,在训练集中找到其最近的K个邻居,并依据这K个邻居的信息来进行决策[^2]。 #### KNN算法的主要步骤 1. 数据预处理阶段,包括标准化或归一化操作以消除不同特征间量纲差异的影响。 2. 计算待测样本到所有已知样本的距离,常用欧氏距离或其他形式的距离度量方式。 3. 找出距离最小的前K个样本作为近邻点集合。 4. 对于分类任务采用投票机制决定最终类别;而对于回归任务则取平均值或者加权平均值得出结果。 #### 距离计算公式示例 以下是两种常见距离公式的Python实现: ```python import numpy as np def euclidean_distance(x, y): """欧几里得距离""" return np.sqrt(np.sum((np.array(x) - np.array(y)) ** 2)) def manhattan_distance(x, y): """曼哈顿距离""" return np.sum(abs(np.array(x) - np.array(y))) ``` 上述函数分别实现了欧氏距离和曼哈顿距离的计算过程。 #### 实际应用场景举例 假设我们有一个简单的电影分类场景,其中每部影片由两个属性描述:“拥抱次数”和“打斗次数”。利用已有标注的数据集可以构建模型并预测未知标签的新样例所属类型[^4]。 #### 可能存在的挑战及优化方向 尽管KNN易于理解和实现,但在大规模数据集上的性能可能较差,因为每次都需要遍历整个数据库寻找最接近的邻居。因此可以通过KD树索引结构加速查询效率,或是引入降维技术减少维度灾难带来的影响[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值