原文链接:https://www.ahaoaha.top/2019/05/17/Golang中的常用数据结构/
string
golang中string是一个内置类型,它的默认值是""
,golang中的string的底层结构与C++的STL中的string是很类似的,golang中string是定长的,在底层结构的len中记录当前string的长度,它不支持扩容,但是golang依旧支持string的+/+=操作。
type stringStruct struct {
str unsafe.Pointer //指向一个[len]byte的数组
len int //代表string的长度
}
string赋值
当一个stirng赋值给另一个string时,仅仅是对结构体中的Pointer以及len进行值拷贝,这时候两个string对象就会指向同一块内存,很容易会想到浅拷贝的常见问题,但是实际上并不会出现浅拷贝的问题,通常string的内存会被编译器分配到只读区,该内存区域是不可写入的,当对字符串赋值时,对应字符串结构体中的Pointer会被修改为另一个地址,不会影响前一个字符串结构体中的地址。
s1 := "hello"
s2 := s1
s2 = "h"
//此时s2的Pointer与s1的Pointer不同
使用fmt.Sprintf
生成的字符串会被分配在堆空间
+
操作
根据gdb调试发现+
操作会调用runtime/string.go
中的concatstring2
函数
func concatstrings(buf *tmpBuf, a []string) string {
idx := 0
l := 0
count := 0
for i, x := range a {
n := len(x)
if n == 0 {
continue
}
if l+n < l {
throw("string concatenation too long")
}
l += n //计算出两个字符串len的和
count++ //保存要拼接的字符串的个数
idx = i //保存要拼接的最后一个字符串的index
}
if count == 0 { //表示传进来的字符串slice为空
return ""
}
// If there is just one string and either it is not on the stack
// or our result does not escape the calling frame (buf != nil),
// then we can return that string directly.
if count == 1 && (buf != nil || !stringDataOnStack(a[idx])) { //count=1代表需要拼接的字符串只有一个,如果当前字符串位于只读区且buf不为nil则可以直接返回
return a[idx]
}
s, b := rawstringtmp(buf, l) //s指向string,此时的s长度为l,b指向s的Pointer内存缓冲区
for _, x := range a { //此时b string的长度即为a中的所有的string的长度总和,该步将a中的所有字符按顺序拷贝到buf中
copy(b, x)
b = b[len(x):]
}
return s
}
func concatstring2(buf *tmpBuf, a [2]string) string {
return concatstrings(buf, a[:])
}
array
var 数组名 [数组元素个数]数组元素类型{...}
定义数组,定义array与slice的区别就在于是否包含明确的元素个数,若有则为数组,数组不支持扩容
type array struct {
array unsafe.Pointer
len int
}
slice
slice与C++的STL中的vector类似,是一种动态的数组,
type slice struct {
array unsafe.Pointer
len int
cap int
}
//slice append扩容机制
func growslice(et *_type, old slice, cap int) slice {
if raceenabled {
callerpc := getcallerpc()
racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice))
}
if msanenabled {
msanread(old.array, uintptr(old.len*int(et.size)))
}
if cap < old.cap {
panic(errorString("growslice: cap out of range"))
}
if et.size == 0 {
// append should not create a slice with nil pointer but non-zero len.
// We assume that append doesn't need to preserve old.array in this case.
return slice{unsafe.Pointer(&zerobase), old.len, cap}
}
newcap := old.cap
doublecap := newcap + newcap
if cap > doublecap {
newcap = cap
} else {
if old.len < 1024 { //旧元素个数小于1024则按照2倍扩容
newcap = doublecap
} else {
// Check 0 < newcap to detect overflow
// and prevent an infinite loop.
for 0 < newcap && newcap < cap {
newcap += newcap / 4 //大于1024按照1.25倍扩容
}
// Set newcap to the requested cap when
// the newcap calculation overflowed.
if newcap <= 0 {
newcap = cap
}
}
}
var overflow bool
var lenmem, newlenmem, capmem uintptr
// Specialize for common values of et.size.
// For 1 we don't need any division/multiplication.
// For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant.
// For powers of 2, use a variable shift.
switch {
case et.size == 1:
lenmem = uintptr(old.len)
newlenmem = uintptr(cap)
capmem = roundupsize(uintptr(newcap))
overflow = uintptr(newcap) > maxAlloc
newcap = int(capmem)
case et.size == sys.PtrSize:
lenmem = uintptr(old.len) * sys.PtrSize
newlenmem = uintptr(cap) * sys.PtrSize
capmem = roundupsize(uintptr(newcap) * sys.PtrSize)
overflow = uintptr(newcap) > maxAlloc/sys.PtrSize
newcap = int(capmem / sys.PtrSize)
case isPowerOfTwo(et.size):
var shift uintptr
if sys.PtrSize == 8 {
// Mask shift for better code generation.
shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
} else {
shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
}
lenmem = uintptr(old.len) << shift
newlenmem = uintptr(cap) << shift
capmem = roundupsize(uintptr(newcap) << shift)
overflow = uintptr(newcap) > (maxAlloc >> shift)
newcap = int(capmem >> shift)
default:
lenmem = uintptr(old.len) * et.size
newlenmem = uintptr(cap) * et.size
capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
capmem = roundupsize(capmem)
newcap = int(capmem / et.size)
}
// The check of overflow in addition to capmem > maxAlloc is needed
// to prevent an overflow which can be used to trigger a segfault
// on 32bit architectures with this example program:
//
// type T [1<<27 + 1]int64
//
// var d T
// var s []T
//
// func main() {
// s = append(s, d, d, d, d)
// print(len(s), "\n")
// }
if overflow || capmem > maxAlloc {
panic(errorString("growslice: cap out of range"))
}
var p unsafe.Pointer
if et.kind&kindNoPointers != 0 {
p = mallocgc(capmem, nil, false)
// The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length).
// Only clear the part that will not be overwritten.
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
} else {
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
p = mallocgc(capmem, et, true)
if writeBarrier.enabled {
// Only shade the pointers in old.array since we know the destination slice p
// only contains nil pointers because it has been cleared during alloc.
bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(old.array), lenmem)
}
}
memmove(p, old.array, lenmem)
return slice{p, old.len, newcap} //返回的是一个新的slice对象
}
- 元素个数小于1024按照2倍扩容
- 元素个数大于等于1024按照1.25倍扩容
map
声明方式:
var 对象名 map[key_type]valuetype
:仅仅进行声明会创建一个nil map,nil map是不能用来存放键值对的,也就是不能使用的对象名 := make(map[key_type]value_type)
:可以直接使用- map_obj_name := map[key_type][value_type]{“key1”:“value1”, “key2”: “value2”, …}
查看map中是否有某个key值
value, ok := map_obj_name["key_name"]
//如果key_name存在,则返回对应的value和true
//如果key_name不存在,则返回nil和false
插入删除map中的元素
//插入元素:直接赋值,若key不存在则插入
map_obj_name[key_name] = value
//删除元素
delete(map_obj_name[key_name])