The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
题解1(暴力法):直接暴力求解就行了;
#include <iostream>
#include <cstdio>
using namespace std;
#define inf 0x3f3f3f3f
int a[5500];
int main()
{
int n,ans;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
int cnt=0;
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++)
if(a[i]>a[j]) cnt++;
ans=cnt;
for(int i=0;i<n;i++)
{
cnt=cnt-a[i]+(n-1-a[i]);
if(ans>cnt) ans=cnt;
}
printf("%d\n",ans);
}
return 0;
}
题解2(线段树):num表示 l,r 区间内已有的数字,每输入一个 a[i],先检查 a[i], n-1 区间内已有的数字,这就是 a[i] 之前比 a[i] 大的数字的数量,全部累加,即为所求的逆序; 再循环一遍更新最小逆序就行了;
#include <iostream>
#include <cstdio>
using namespace std;
#define inf 0x3f3f3f3f
const int maxn=5500;
int a[maxn];
struct seg
{
int l,r,num;
}tree[maxn<<2];
void build(int p, int l, int r)
{
tree[p].l = l;
tree[p].r = r;
tree[p].num = 0;
if(l == r) return;
int mid = (l + r) >> 1;
build(p<<1, l, mid);
build(p<<1|1, mid+1, r);
}
void add(int p, int x)
{
if(tree[p].l == tree[p].r)
{
tree[p].num ++;
return;
}
int mid = (tree[p].l + tree[p].r) >> 1;
if(x<=mid) add(p<<1, x);
else add(p<<1|1, x);
tree[p].num = tree[p<<1].num + tree[p<<1|1].num;
}
int ask(int p, int l, int r)
{
if(l == tree[p].l && tree[p].r == r) return tree[p].num;
int mid = (tree[p].l + tree[p].r) >> 1;
if(r <= mid) return ask(p<<1, l, r);
else if(l > mid) return ask(p<<1|1, l, r);
else return ask(p<<1, l, mid) + ask(p<<1|1, mid+1, r);
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
build(1,0,n-1);
int sum=0;
for(int i=0;i<n;i++)
{
sum+=ask(1,a[i],n-1);
add(1,a[i]);
}
int ans=sum;
for(int i=0;i<n;i++)
{
sum=sum-a[i]+n-1-a[i];
if(ans>sum) ans=sum;
}
printf("%d\n",ans);
}
return 0;
}
5万+

被折叠的 条评论
为什么被折叠?



