一开始又是试了一下求最长路径+路径记录,之后又试了一下权值取反求最短路径+记录……发现都行不通= =,之后bing了一下发现Floyd貌似不能出路有环的最长路径…………后来看书发现,原来直接改一下递推公式就变成了求“最大容量路”,即此题的算法!
灵活,灵活啊~
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
const int POINT = 210;
int A[POINT][POINT];
string city[POINT];
int main()
{
int cases = 0;
int n,r;
while(scanf("%d %d",&n,&r),n||r)
{
cases++;
memset(A,0,sizeof(A));
int numcity = 1;
for(int i=1; i<=r; i++)
{
string a,b;
int w;
cin>>a>>b>>w;
int u=0,v=0;
for(int j=1; j<=numcity; j++)
{
if(a==city[j])
u = j;
if(b==city[j])
v = j;
}
if(u==0)
{
u = numcity;
city[numcity++] = a;
}
if(v==0)
{
v = numcity;
city[numcity++] = b;
}
A[u][v] = A[v][u] = w;
}
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
for(int k=1; k<=n; k++)
A[j][k] = max(A[j][k],min(A[j][i],A[i][k]));
string a,b;
cin>>a>>b;
int u,v;
for(int i=1; i<=n; i++)
{
if(a == city[i])
u = i;
if(b == city[i])
v = i;
}
printf("Scenario #%d\n%d tons\n\n",cases,A[u][v]);
for(int i=1;i<=n;i++)
city[i].clear();
}
}