剪绳子

探讨如何将长度为n的绳子剪成m段,以获得各段长度乘积的最大值。通过动态规划算法解决此问题,给出具体实现代码及示例,如输入10,输出最大乘积为36。

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n > 1并且m > 1),每段绳子的长度记为 k[0],k[1], ... ,k[m] 。请问 k[0] * k[1] *... * k[m] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

样例
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

状态方程 F(n) = max{i * F(n - i), i * (n - i)}, i = 1, 2, ... , n - 1

题目来源:https://leetcode-cn.com/problems/jian-sheng-zi-lcof/

class Solution {
    public int cuttingRope(int n) {
        if(n<=1) return 0;
        if(n==2) return 1;
        int[] F=new int[n+1];
        F[0]=F[1]=0;
        F[2]=1;
        for(int len=3;len<=n;len++){
            for(int cut=1;cut<len;cut++){
                F[len]=Math.max(Math.max(cut*F[len-cut],cut*(len-cut)),F[len]);
                 //Math.max(cut*F[len-cut],cut*(len-cut)每种分割方案的最大值
                  //Math.max(Math.max(cut*F[len-cut],cut*(len-cut)),F[len]);选择最终的最大值
            }
        }
        return F[n];
    }
}

 

### 贪心算法实现 贪心算法的思路是尽可能多地出长度为3的绳子段,因为当绳子长度大于等于5时,出长度为3的段可以获得更大的乘积。当剩下的长度为4时,将其成两个2的段,这样可以获得更大的乘积[^2]。 ```cpp #include <iostream> #include <cmath> class Solution { public: int cutRope(int number) { if(number < 2) return 0; if(number == 2) return 1; if(number == 3) return 2; int countOf3 = number / 3; if (number - countOf3 * 3 == 1) { countOf3--; return static_cast<int>(pow(3, countOf3)) * 4; } if (number - countOf3 * 3 == 2) { return static_cast<int>(pow(3, countOf3)) * 2; } return static_cast<int>(pow(3, countOf3)); } }; int main() { Solution sol; std::cout << sol.cutRope(10) << std::endl; // 输出 36 return 0; } ``` ### 动态规划实现 动态规划的思路是将绳子长度从1到n的所有可能法都计算出来,并存储在数组中。对于每个长度i,遍历所有可能的法j(从1到i-1),并计算j*(i-j)和dp[j]*(i-j)的乘积,取最大值作为dp[i]的值[^1]。 ```cpp #include <iostream> #include <vector> #include <algorithm> class Solution { public: int cutRope(int number) { if (number < 2) return 0; if (number == 2) return 1; if (number == 3) return 2; std::vector<int> dp(number + 1, 0); for (int i = 1; i <= number; ++i) { for (int j = 1; j < i; ++j) { dp[i] = std::max(dp[i], std::max(j * (i - j), j * dp[i - j])); } } return dp[number]; } }; int main() { Solution sol; std::cout << sol.cutRope(10) << std::endl; // 输出 36 return 0; } ``` ### 总结 - **贪心算法**:适用于较大的绳子长度,时间复杂度为O(1),但需要数学推导来证明最优解。 - **动态规划**:适用于较小的绳子长度,时间复杂度为O(n^2),但不需要数学推导。 两种方法都可以有效地解决绳子问题,选择哪种方法取决于具体的应用场景和对时间复杂度的要求。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值