最小化最大值,二分。先用floyd处理两点之间的最短路,然后二分距离,判断当前距离是否合法。因为题目说至少有一个解,所以二分时对与每个距离,判断最大距离是当前距离的情况,能否使每头牛都接受服务。一直找到最小的最大距离。
心态写炸了,一直tle。http://www.hankcs.com/program/algorithm/poj-2112-optimal-milking-manager.html 码农场博主和我用的是同一个模板,就参考了他的代码。因为建图方式和各种风格不一样。就把他的代码一点点改成我代码的样子来找错。老半天才发现了一个错误。我用花括号来初始化给结构体赋值的话,就错了。用构造函数给结构体赋值的话,结果就对了。。。不过这并不是我tle的原因。代码怎么看着都差不多,也不知道哪里tle了。
#include <iostream>
#include <vector>
#include <queue>
#include <string.h>
#include <stdio.h>
using namespace std;
#define MAXN 250
#define INF 0x3f3f3f3f
struct edge
{
int to, rev;
int cap;
edge(){}
edge(int to, int cap, int rev) : to(to), cap(cap), rev(rev){}
};
vector <edge> G[MAXN];
int level[MAXN];
int iter[MAXN];
void add_edge(int from, int to, int cap)
{
G[from].push_back(edge(to, cap, G[to].size()));
G[to].push_back(edge(from, 0, G[from].size() - 1));
}
void bfs(int s)
{
memset(level, -1, sizeof(level));
queue<int> que;
level[s] = 0;
que.push(s);
while (!que.empty())
{
int v = que.front();
que.pop();
for (int i = 0; i < G[v].size(); ++i)
{
edge &e = G[v][i];
if (e.cap > 0 && level[e.to] < 0)
{
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
int dfs(int v, int t, int f)
{
if (v == t)
return f;
for (int &i = iter[v]; i < G[v].size(); ++i)
{
edge &e = G[v][i];
if (e.cap > 0 && level[v] < level[e.to])
{
int d = dfs(e.to, t, min(f, e.cap));
if (d > 0)
{
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s, int t)
{
int flow = 0;
for (;;)
{
bfs(s);
if (level[t] < 0)
return flow;
memset(iter, 0, sizeof(iter));
int f;
while ((f = dfs(s, t, INF)) > 0)
{
flow += f;
}
}
}
int K, C, M, V;
int g[MAXN][MAXN];
bool check(int limit)
{
int s = 0, t = V + 1;
for (int i = 0; i < V + 2; i++)
G[i].clear();
for (int i = 1; i <= K; i++)
add_edge(i, t, M);
for (int i = K+1; i <= V; i++)
add_edge(s, i, 1);
for (int i = 1; i <= K; i++)
{
for (int j = K+1; j <= V; j++)
{
if (g[i][j] <= limit)
add_edge(j, i, 1);
}
}
return max_flow(s, t) == C;
}
int solve()
{
for (int k = 1; k <= V; ++k)
for (int i = 1; i <= V; ++i)
for (int j = 1; j <= V; ++j)
{
g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
}
int lb = 0, ub = MAXN * V;
while(lb <= ub)
{
int mid = (lb + ub) >> 1;
if(check(mid)) ub = mid-1;
else lb = mid+1;
}
return lb;
}
int main()
{
scanf("%d%d%d", &K, &C, &M);
V = K + C;
for (int i = 1; i <= V; ++i)
{
for (int j = 1; j <= V; ++j)
{
int d;
scanf("%d", &d);
g[i][j] = d ? d : INF;
}
}
printf("%d\n", solve());
return 0;
}