论文阅读笔记之——《Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network》

论文:https://arxiv.org/pdf/1907.02665.pdf

本文采用高阶特征做图像质量评鉴

propose a deep bilinear model for blind image quality assessment (BIQA) that handles both synthetic and authentic distortions(合成失真、真实失真).

网络由两个部分组成,每个部分复杂一种失真的。For synthetic distortions, we pre-train a CNN to classify image distortion type and level, where we enjoy largescale training data. For authentic distortions, we adopt a pretrained CNN for image classification。The features from the two CNNs are pooled bilinearly into a unified representation for final quality prediction. We then fine-tune the entire model on target subject-rated databases(目标数据库) using a variant of stochastic gradient descent(使用随机梯度下降的变体。).

图像质量评估(image quality assessment,IQA)

对于合成失真,we construct a large-scale pre-training set based on the Waterloo Exploration Database and the PASCAL VOC
Database, where the images are synthesized with nine distortion types and two to five distortion levels.利用数据集中已知的失真类型以及level的信息,来预先训练一个CNN通过多类分类任务。

对于真实失真,很难去模拟退化过程,因此采用VGG-16(在imageNet上预训练)

We model synthetic and authentic distortions as two-factor variations, and pool the two feature sets bilinearly into a unified representation (统一代表) for final quality prediction.

 

We consider bilinear pooling to combine S-CNN for synthetic distortions and VGG-16 for authentic distortions into a unified model. Bilinear models have been shown to be effective in modeling two-factor variations, such as style and content of images, location and appearance for finegrained recognition, spatial and temporal characteristics for video analysis, and text and visual information for question-answering.

 

 

 

 

 

 

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值