做系统稳定性问题分析,当遇到系统卡死时,我们经常要使用“kill -3 pid”来打印System_Server进程各个线程的Java调用栈,根据线程状态及调用栈来更进一步定位问题点,当然某个应该界面卡顿时间长时也可以通过这个命令来抓取Java调用栈进行分析。注意native进程是不能用kill -3来打trace的,而是使用debuggerd。但是某些时候打印不出来trace,要知道原因,自然要知道“kill -3 pid”原理是怎么样的。
“Signal Catcher”线程。由Zygote孵化出来的每个进程会启动一个“Signal Catcher”线程,这个线程就是专门用来接收、处理进程收到的SIGQUIT、SIGUSR1信号的。注意,Zygote进程是不存在“Signal Catcher”线程的,所以是打不出来trace的。利用“ps -t pid”可打印进程pid的所有线程,可以看到有一个“Signal Catcher”线程。
“Signal Catcher”线程启动。启动流程很简单,如下图所示,可根据下面这个流程自行走一遍代码(基于Android 5.1)。
上面这个时序图中,主要逻辑集中在art/runtime/Signal_catcher.cc文件中,下面将具体分析时序图中的run()、HandleSigQuit()、Output()三个函数。
1、run()
void* SignalCatcher::Run(void* arg) {
SignalCatcher* signal_catcher = reinterpret_cast<SignalCatcher*>(arg);
CHECK(signal_catcher != NULL);
Runtime* runtime = Runtime::Current();
CHECK(runtime->AttachCurrentThread("Signal Catcher", true, runtime->GetSystemThreadGroup(),
!runtime->IsCompiler())); //将线程名更改为“Signal Catcher”,该函数更详细的解释见:http://www.th7.cn/Program/java/201405/195472.shtml
Thread* self = Thread::Current();
DCHECK_NE(self->GetState(), kRunnable);
{
MutexLock mu(self, signal_catcher->lock_);
signal_catcher->thread_ = self;
signal_catcher->cond_.Broadcast(self);
}
// Set up mask with signals we want to handle.
SignalSet signals;
signals.Add(SIGQUIT); //添加接收的信号包括SIGQUIT、SIGUSR1。SIGQUIT毫无疑问是打印trace的,SIGUSR1(-10)是触发强制GC。
signals.Add(SIGUSR1);
while (true) {
int signal_number = signal_catcher->WaitForSignal(self, signals); //等待SIGQUIT、SIGUSR1信号来临,信号来了后该调用返回,否则阻塞在该调用上(WaitForSignal()函数里面实际上是调用了SignalSet.Wait(),具体实现在art/runtime/Signal_set.h文件中,SignalSet.wait()函数调用了sigwait()这个系统调用来阻塞接收SIGQUIT、SIGUSR1信号);
if (signal_catcher->ShouldHalt()) { //如果SignalCatcher对象已经调了析构函数,那么直接调用DetachCurrentThread(),正常情况下该条件不满足;
runtime->DetachCurrentThread();
return NULL;
}
switch (signal_number) {
case SIGQUIT: //kill -3 pid,调用HandleSigQuit(),打印所有线程的调用栈;
signal_catcher->HandleSigQuit();
break;
case SIGUSR1: //kill -10 pid,调用HandleSigUsr1(),触发强制GC;
signal_catcher->HandleSigUsr1();
break;
default:
LOG(ERROR) << "Unexpected signal %d" << signal_number;
break;
}
}
}
2、HandleSigQuit()void SignalCatcher::HandleSigQuit() {
Runtime* runtime = Runtime::Current();
ThreadList* thread_list = runtime->GetThreadList(); //获取所有的线程;
// Grab exclusively the mutator lock, set state to Runnable without checking for a pending
// suspend request as we're going to suspend soon anyway. We set the state to Runnable to avoid
// giving away the mutator lock.
thread_list->SuspendAll(); //挂起所有的线程。上面那段注释的意识是:如果某个线程持有某个锁并在runnable状态,那么并不真的去挂起这个线程,所以我们会在trace中见到runnable的线程?
Thread* self = Thread::Current();
Locks::mutator_lock_->AssertExclusiveHeld(self);
const char* old_cause = self->StartAssertNoThreadSuspension("Handling SIGQUIT");
ThreadState old_state = self->SetStateUnsafe(kRunnable);
std::ostringstream os; //定义一个字符串流,用来包装、格式化输出内容;
os << "\n"
<< "----- pid " << getpid() << " at " << GetIsoDate() << " -----\n";
DumpCmdLine(os); //打印cmdline中的内容;
// Note: The string "ABI:" is chosen to match the format used by debuggerd.
os << "ABI: " << GetInstructionSetString(runtime->GetInstructionSet()) << "\n";
os << "Build type: " << (kIsDebugBuild ? "debug" : "optimized") << "\n";
runtime->DumpForSigQuit(os);
if (false) {
std::string maps;
if (ReadFileToString("/proc/self/maps", &maps)) {
os << "/proc/self/maps:\n" << maps;
}
}
os << "----- end " << getpid() << " -----\n"; //trace结束标志;
CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable);
self->EndAssertNoThreadSuspension(old_cause);
thread_list->ResumeAll(); //resume所有挂起的线程;
// Run the checkpoints after resuming the threads to prevent deadlocks if the checkpoint function
// acquires the mutator lock.
if (self->ReadFlag(kCheckpointRequest)) {
self->RunCheckpointFunction();
}
Output(os.str()); //调用Output()将字符串流中的内容写到traces.txt中;
}
3、Output()
void SignalCatcher::Output(const std::string& s) {
if (stack_trace_file_.empty()) {
LOG(INFO) << s;
return;
}
ScopedThreadStateChange tsc(Thread::Current(), kWaitingForSignalCatcherOutput);
int fd = open(stack_trace_file_.c_str(), O_APPEND | O_CREAT | O_WRONLY, 0666); //以追加、创建、可写方式打开/data/anr/traces.txt
if (fd == -1) {
PLOG(ERROR) << "Unable to open stack trace file '" << stack_trace_file_ << "'";
return;
}
std::unique_ptr<File> file(new File(fd, stack_trace_file_));
if (!file->WriteFully(s.data(), s.size())) { //将字符串流写入/data/anr/traces.txt中
PLOG(ERROR) << "Failed to write stack traces to '" << stack_trace_file_ << "'";
} else {
LOG(INFO) << "Wrote stack traces to '" << stack_trace_file_ << "'";
}
}
总结:熟悉了这个流程,以后碰到打不出来trace,通过日志可大致定位问题点。最后再说一下SIGQUIT、SIGUSR1信号处理,SIGQUIT(kill -3 pid)用来打印Java进程trace,SIGUSR1(kill -10 pid)可触发进程进行一次强制GC。