参考:http://blog.youkuaiyun.com/acm_cxlove/article/details/7963286
tsp的一些讲解:http://blog.youkuaiyun.com/gfaiswl/article/details/4749713
floyd + tsp
(1)如果没有点0,将其加入,并设c[],d[],都为0即可
(2)dp[i][j]表示从0开始经过集合j中的点最后在i点的最大钱数
(3)最后判断,dp[i][ALL]表示遍历了所有的点后,位于i点的最大钱数,则判dp[i][ALL]和dis[num[i]][0]的大小关系即可
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <string>
#include <set>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
#include <bitset>
using namespace std;
//LOOP
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FED(i, b, a) for(int i = (b); i>= (a); --i)
#define REP(i, N) for(int i = 0; i < (N); ++i)
#define CLR(A,value) memset(A,value,sizeof(A))
//INPUT
#define RI(n) scanf("%d", &n)
#define RII(n, m) scanf("%d%d", &n, &m)
#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define RS(s) scanf("%s", s)
typedef long long LL;
const int INF = 1000000007;
const int MOD = 1000000007;
const double eps = 1e-10;
const int MAXN = 31000;
int ALL;
int dis[110][110];
int dp[20][1 << 17];
int c[20], d[20];
int num[20];
int n;
void floyd()
{
REP(k, n) REP(i, n) REP(j, n)
{
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
int main()
{
int m, h;
int money;
int x, y, z;
int T;
RI(T);
while (T--)
{
RIII(n, m, money);
REP(i, n + 1) REP(j, n + 1)
dis[i][j] = i == j ? 0 : INF;
while (m--)
{
RIII(x, y, z);
x--; y--;
dis[x][y] = min(dis[x][y], z);
dis[y][x] = dis[x][y];
}
floyd();
int pos = -1;
RI(h);
REP(i, h)
{
RIII(num[i], d[i], c[i]);
num[i]--;
if (num[i] == 0)
pos = i;
}
if (pos == -1)
{
num[h] = 0; c[h] = 0; d[h] = 0;
pos = h++;
}
ALL = (1 << h) - 1;
CLR(dp, -1);///
REP(i, h)
if (money - c[i] - dis[num[i]][0] >= 0)
dp[i][1 << i] = money - c[i] + d[i] - dis[num[i]][0];
// if (money - c[pos] >= 0) dp[pos][1 << pos] = money - c[pos] + d[pos];
// dp[pos][0] = money;///初始状态
REP(ss, ALL + 1)
REP(i, h)
{
if (dp[i][ss] == -1) continue;
REP(j, h)
{
// if (i != j && (ss & (1 << j))) continue;
if (ss & (1 << j)) continue;
if (dp[i][ss] >= dis[num[i]][num[j]] + c[j])
dp[j][ss | (1 << j)] = max(dp[j][ss | (1 << j)], dp[i][ss] - dis[num[i]][num[j]] - c[j] + d[j]);
}
}
int ans = 0;
REP(i, h)
{
if (dp[i][ALL] >= dis[num[i]][0])
{
ans = 1;
break;
}
}
if (ans)
puts("YES");
else
puts("NO");
}
return 0;
}