from sklearn.feature_extraction.text import CountVectorizer import seaborn as sns import matplotlib.pyplot as plt corpus = ['time flies like an arrow', 'Fruit flies like a banana'] one_hot_vectorizer = CountVectorizer(binary=True) one_hot=one_hot_vectorizer.fit_transform(corpus).toarray() print(one_hot) fs = one_hot_vectorizer.get_feature_names_out(); print(fs) sns.heatmap(one_hot, annot=True, cbar=False, xticklabels=fs, yticklabels=['s1','s2']) plt.show()
python 计算onehot 并实现绘图
最新推荐文章于 2025-05-06 23:38:51 发布