8、模块清单与定义类型的模块化

模块清单与定义类型的模块化

1. 从定义类型中包含类

在某些场景下,之前定义的 example_app_config 类型有特定用途,它假定 /etc/example_app 及其子目录是在定义类型之外独立管理的。不过,很多定义类型需要在多个独立类或其他定义类型中使用,这就要求它们具备自包含性。

例如,要确保以下资源成为清单的一部分:

file { 
    [ '/etc/example_app',
      '/etc/example_app/config.d.enabled' ]:
        ensure => 'directory';
}

若直接将此声明放入定义体中,会导致重复资源错误。每个 example_app_config 实例都会尝试自行声明这些目录。为避免此问题,可使用组件类模式。将上述声明封装在一个类中(如 example_app_config_directories ),并在定义体中包含该类:

define example_app_config($regions = []) { 
    include example_app_config_directories 
    … 
}

2. 类中嵌套定义

语言中有一个不太常见的特性,即类体中可以嵌套容器,类和定义类型都能成为类体的一部分。

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值