1、构建可持续医疗系统的通用数据接口

构建可持续医疗系统的通用数据接口

在当今数字化时代,医疗保健领域正经历着前所未有的变革。人们通过各种健康设备积极参与数字医疗活动,产生了海量的医疗数据。然而,这些数据分散在不同的系统中,格式各异,导致数据共享和整合面临巨大挑战。实现医疗实体之间的互操作性成为了长期以来的难题。为了解决这一问题,本文提出了一种创新的通用数据接口(CDI)层,旨在实现医疗数据的无缝交换和共享,提高医疗服务的效率和质量。

1. 医疗数据整合的现状与挑战

当前,医疗数据的增长速度呈指数级上升,这些数据来自医生、实验室、医疗设备、研究机构以及个人健身设备等多个渠道。然而,医疗数据的整合面临着诸多挑战。首先,数据传输格式多样,如HL7v2或自定义格式,这使得不同系统之间的数据共享和集成变得困难且耗时。其次,即使数据格式相同,不同系统对数据的表示方式也可能不同,导致语义集成困难。例如,在G. Alterovitz等人(2015)的研究中,相同的集成算法和数据可能会产生不同的结果,这些结果在格式和注释上具有任意性,难以复用。

为了实现医疗数据的互操作性,许多研究人员提出了各种方法。其中,语义互操作性被认为是解决数据整合问题的关键。语义互操作性是指数据在不同系统之间交换时,能够以未改变的方式进行解释。通过使用本体和标准术语,可以实现数据的语义集成。例如,Web本体可以利用现有的健康标准访问患者记录,从而实现医疗数据的语义互操作性。

2. 相关技术与标准
  • 语义互操作性与电子健康记录(EHR) :语义互操作性在EHR中起着至关重要的作用。EHR是患者健康记录的数字化表示,包括医疗治疗、诊断、治疗计划和病史等信息。通过实现语义
【3D应力敏感度分析拓扑优化】【基于p-范数全局应力衡量的3D敏感度分析】基于伴随方法的有限元分析和p-范数应力敏感度分析(Matlab代码实现)内容概要:本文档介绍了基于伴随方法的有限元分析与p-范数全局应力衡量的3D应力敏感度分析,并结合拓扑优化技术,提供了完整的Matlab代码实现方案。该方法通过有限元建模计算结构在载荷作用下的应力分布,采用p-范数对全局应力进行有效聚合,避免传统方法中应力约束过多的问题,进而利用伴随法高效求解设计变量对应力的敏感度,为结构优化提供关键梯度信息。整个流程涵盖了从有限元分析、应力评估到敏感度计算的核心环节,适用于复杂三维结构的轻量化与高强度设计。; 适合人群:具备有限元分析基础、拓扑优化背景及Matlab编程能力的研究生、科研人员与工程技术人员,尤其适合从事结构设计、力学仿真与多学科优化的相关从业者; 使用场景及目标:①用于实现高精度三维结构的应力约束拓扑优化;②帮助理解伴随法在敏感度分析中的应用原理与编程实现;③服务于科研复现、论文写作与工程项目中的结构性能提升需求; 阅读建议:建议读者结合有限元理论与优化算法知识,逐步调试Matlab代码,重点关注伴随方程的构建与p-范数的数值处理技巧,以深入掌握方法本质并实现个性化拓展。
下载前必看:https://pan.quark.cn/s/9f13b242f4b9 Android 平板设备远程操控个人计算机的指南 Android 平板设备远程操控个人计算机的指南详细阐述了如何运用 Splashtop Remote 应用程序达成 Android 平板设备对个人计算机的远程操控。 该指南被划分为四个环节:首先,在个人计算机上获取并部署 Splashtop Remote 应用程序,并设定客户端密码;其次,在 Android 平板设备上获取并部署 Splashtop Remote 应用程序,并与之建立连接至个人计算机的通道;再次,在 Splashtop Remote 应用程序中识别已部署个人计算机端软件的设备;最后,运用平板设备对个人计算机实施远程操控。 关键点1:Splashtop Remote 应用程序的部署与配置* 在个人计算机上获取并部署 Splashtop Remote 应用程序,可通过官方网站或其他获取途径进行下载。 * 部署结束后,必须输入客户端密码,该密码在平板控制计算机时用作验证,密码长度至少为8个字符,且需包含字母与数字。 * 在配置选项中,能够设定是否在设备启动时自动运行客户端,以及进行互联网搜索设置。 关键点2:Splashtop Remote 应用程序的 Android 版本获取与部署* 在 Android 平板设备上获取并部署 Splashtop Remote 应用程序,可通过 Google Play Store 或其他获取途径进行下载。 * 部署结束后,必须输入客户端密码,该密码用于连接至个人计算机端软件。 关键点3:运用 Splashtop Remote 远程操控个人计算机* 在 Splashtop Remote 应用程序中识别...
先看效果: https://pan.quark.cn/s/7baef05d1d08 在信息技术范畴内,语音识别是一项核心的技术,它赋予计算机或设备解析和处理人类语音输入的能力。 本研究项目运用了MFCC(Mel Frequency Cepstral Coefficients)与VQ(Vector Quantization)算法,借助VC++6.0的MFC(Microsoft Foundation Classes)库,开发出一个图形用户界面(GUI),从而达成基础的语音识别功能。 接下来将具体分析这些技术及其应用。 **MFCC特征提取**MFCC是语音信号处理中的一个标准方法,用于将复杂的语音波形转换成一组便于处理的数据参数。 MFCC模拟人类听觉系统对声音频率的感知模式,通过梅尔滤波器组对声音频谱进行分段处理,进而计算每个滤波器组的倒谱系数。 该过程包含以下环节:1. **预加重**:旨在削弱人声的低频响应部分,同时增强高频成分的强度。 2. **分帧和窗函数**:将语音信号分割成多个短时帧,并应用窗函数以降低帧与帧之间的相互干扰。 3. **梅尔尺度滤波**:采用梅尔滤波器组对每一帧进行剖析,获取梅尔频率谱。 4. **取对数**:鉴于人耳对声音强度的感知呈现非线性特征,因此对梅尔频率谱取对数操作以更好地符合人类听觉系统。 5. **离散余弦变换(DCT)**:对对数谱实施DCT运算,提取主要特征,通常选取前12-20个系数作为MFCC特征。 6. **动态特性**:为了捕捉语音的时域变化特征,还可计算MFCC特征的差分值和二阶差分值。 **VQ识别算法**VQ是一种数据压缩方法,在语音识别领域中常用于特征矢量的量化处理。 其基本理念是将高维度的MFCC特征向量映射到一个小型、预...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值