8、Machine Learning: Random Forest, Gradient Boosting, and AdaBoost

Machine Learning: Random Forest, Gradient Boosting, and AdaBoost

1. Implementing a Random Forest in Python

Random forest can be implemented in Python using the scikit - learn library. Here are the implementation details:

from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=100,max_depth=5,min_samples_leaf=100,random_state=10)
rfc.fit(X_train, y_train)

To make predictions:

rfc_pred=rfc.predict_proba(X_test)

After making predictions, the AUC can be calculated as follows:

from sklearn.metrics import roc_auc_score
roc_auc_score(y_test, rfc_pred[:,1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值