22、Mac OS X 开发中的通知机制详解

Mac OS X 开发中的通知机制详解

1. 通知机制概述

在开发过程中,对象之间的消息传递有多种方式。常见的方式有对象向自身或其他对象发送消息,例如:

[self doSomething];
[someObject doSomethingElse];

还可以通过目标 - 动作机制,让一个对象成为另一个对象的目标,当特定事件触发时执行相应动作。比如在 Windows 和 Views 应用程序中,Measure 按钮被设置为 WVMeasurer 实例的目标,当按钮被按下时,会向 WVMeasurer 实例发送 showMeasurements: 消息。

不过,对于紧密相连的对象,上述方式可行,但有时一个对象可能希望发送的消息能被多个对象接收,且不关心具体是哪些对象接收。例如,当窗口在屏幕上调整大小时,多个对象可能需要做出反应。而窗口只有一个委托,若要向多个接收者发送消息,可能需要在委托方法中进行复杂操作。在 Mac OS X 中,我们可以使用通知系统来解决这类问题。

通知机制类似于邮件列表,列表管理员(即 NSNotificationCenter 实例)会记录那些专门注册接收特定类型信息的对象,这些接收对象被称为观察者。观察者在注册时可以明确指定自己想要接收的信息类型,甚至可以指定只接收来自特定发送者对象的信息。

2. NSNotification 对象剖析

在深入了解通知中心和观察者之前,我们先看看实际的 NSNotification 对象包含哪些内容。
首先,从 showMeasurements: 方法中移除

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值