最近要用caffe处理一个multi-label的回归问题,就是输出是一个向量,不是一个具体的数值,这个时候之前的leveldb格式就不凑效了,因为caffe源代码里面默认label是一个数值,网上搜了下,都说hdf5格式可以解决这个问题
在caffe里面,有一个hdf5的datalayer作为数据输入,从源代码来看,对于label的维数没做限制,剩下的问题就是如何生成hdf5的数据,目前只是找到了github上的一个人共享的用matlab写的hdf5数据的读写操作,在这我把代码粘贴出来
testHDF5.m
- %% WRITING TO HDF5
- filename='trial.h5';
-
- num_total_samples=10000;
- % to simulate data being read from disk / generated etc.
- data_disk=rand(5,5,1,num_total_samples);
- label_disk=rand(10,num_total_samples);
-
- chunksz=100;
- created_flag=false;
- totalct=0;
- for batchno=1:num_total_samples/chunksz
- fprintf('batch no. %d\n', batchno);
- last_read=(batchno-1)*chunksz;
-
- % to simulate maximum data to be held in memory before dumping to hdf5 file
- batchdata=data_disk(:,:,1,last_read+1:last_read+chunksz);
- batchlabs=label_disk(:,last_read+1:last_read+chunksz);
-
- % store to hdf5
- startloc=struct('dat',[1,1,1,totalct+1], 'lab', [1,totalct+1]);
- curr_dat_sz=store2hdf5(filename, batchdata, batchlabs, ~created_flag, startloc, chunksz);
- created_flag=true;% flag set so that file is created only once
- totalct=curr_dat_sz(end);% updated dataset size (#samples)
- end
-
- % display structure of the stored HDF5 file
- h5disp(filename);
-
- %% READING FROM HDF5
-
- % Read data and labels for samples #1000 to 1999
- data_rd=h5read(filename, '/data', [1 1 1 1000], [5, 5, 1, 1000]);
- label_rd=h5read(filename, '/label', [1 1000], [10, 1000]);
- fprintf('Testing ...\n');
- try
- assert(isequal(data_rd, single(data_disk(:,:,:,1000:1999))), 'Data do not match');
- assert(isequal(label_rd, single(label_disk(:,1000:1999))), 'Labels do not match');
-
- fprintf('Success!\n');
- catch err
- fprintf('Test failed ...\n');
- getReport(err)
- end
-
- %delete(filename);
-
- % CREATE list.txt containing filename, to be used as source for HDF5_DATA_LAYER
- FILE=fopen('list.txt', 'w');
- fprintf(FILE, '%s', filename);
- fclose(FILE);
- fprintf('HDF5 filename listed in %s \n', 'list.txt');
-
- % NOTE: In net definition prototxt, use list.txt as input to HDF5_DATA as:
- % layers {
- % name: "data"
- % type: HDF5_DATA
- % top: "data"
- % top: "labelvec"
- % hdf5_data_param {
- % source: "/path/to/list.txt"
- % batch_size: 64
- % }
- % }
store2hdf5.m
- <span style="font-family:Microsoft YaHei;font-size:18px;">function [curr_dat_sz, curr_lab_sz] = store2hdf5(filename, data, labels, create, startloc, chunksz)
- % *data* is W*H*C*N matrix of images should be normalized (e.g. to lie between 0 and 1) beforehand
- % *label* is D*N matrix of labels (D labels per sample)
- % *create* [0/1] specifies whether to create file newly or to append to previously created file, useful to store information in batches when a dataset is too big to be held in memory (default: 1)
- % *startloc* (point at which to start writing data). By default,
- % if create=1 (create mode), startloc.data=[1 1 1 1], and startloc.lab=[1 1];
- % if create=0 (append mode), startloc.data=[1 1 1 K+1], and startloc.lab = [1 K+1]; where K is the current number of samples stored in the HDF
- % chunksz (used only in create mode), specifies number of samples to be stored per chunk (see HDF5 documentation on chunking) for creating HDF5 files with unbounded maximum size - TLDR; higher chunk sizes allow faster read-write operations
-
- % verify that format is right
- dat_dims=size(data);
- lab_dims=size(labels);
- num_samples=dat_dims(end);
-
- assert(lab_dims(end)==num_samples, 'Number of samples should be matched between data and labels');
-
- if ~exist('create','var')
- create=true;
- end
-
-
- if create
- %fprintf('Creating dataset with %d samples\n', num_samples);
- if ~exist('chunksz', 'var')
- chunksz=1000;
- end
- if exist(filename, 'file')
- fprintf('Warning: replacing existing file %s \n', filename);
- delete(filename);
- end
- h5create(filename, '/data', [dat_dims(1:end-1) Inf], 'Datatype', 'single', 'ChunkSize', [dat_dims(1:end-1) chunksz]); % width, height, channels, number
- h5create(filename, '/label', [lab_dims(1:end-1) Inf], 'Datatype', 'single', 'ChunkSize', [lab_dims(1:end-1) chunksz]); % width, height, channels, number
- if ~exist('startloc','var')
- startloc.dat=[ones(1,length(dat_dims)-1), 1];
- startloc.lab=[ones(1,length(lab_dims)-1), 1];
- end
- else % append mode
- if ~exist('startloc','var')
- info=h5info(filename);
- prev_dat_sz=info.Datasets(1).Dataspace.Size;
- prev_lab_sz=info.Datasets(2).Dataspace.Size;
- assert(prev_dat_sz(1:end-1)==dat_dims(1:end-1), 'Data dimensions must match existing dimensions in dataset');
- assert(prev_lab_sz(1:end-1)==lab_dims(1:end-1), 'Label dimensions must match existing dimensions in dataset');
- startloc.dat=[ones(1,length(dat_dims)-1), prev_dat_sz(end)+1];
- startloc.lab=[ones(1,length(lab_dims)-1), prev_lab_sz(end)+1];
- end
- end
-
- if ~isempty(data)
- h5write(filename, '/data', single(data), startloc.dat, size(data));
- h5write(filename, '/label', single(labels), startloc.lab, size(labels));
- end
-
- if nargout
- info=h5info(filename);
- curr_dat_sz=info.Datasets(1).Dataspace.Size;
- curr_lab_sz=info.Datasets(2).Dataspace.Size;
- end
- end</span>