leetcode之Median of Two Sorted Arrays

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

居然还是一道难度为困难的题,在我看来似乎没有,第一眼看到这题,就想到了,用一个容器存储所有的数据,然后分两种情况找中值(最复杂的);还是比较好想和理解的,所以我说没有困难难度,但看讨论区里,都是O(1)空间复杂度,O(log(min(m,n)))时间复杂度。。。

先贴自己写的复杂代码:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        double res=0.0;
        int len1=nums1.size();
        int len2=nums2.size();
        vector<int>tmp;
        int i=0,j=0;
        while(i<len1&&j<len2){
            if(nums1[i]<nums2[j])
                tmp.push_back(nums1[i++]);
            else
                tmp.push_back(nums2[j++]);
        }
        while(i<len1)
            tmp.push_back(nums1[i++]);
        while(j<len2)
            tmp.push_back(nums2[j++]);
        int mid=(len1+len2)/2;
        if((len1+len2)%2==0){
            res=(double(tmp[mid])+double(tmp[mid-1]))/2;
        }
        else{
            res=double(tmp[mid]);
        }
        return res;
    }
};

看了下讨论区的代码,其实就是不用空间存储,然后用二分法找到中值,所以才是O(log(min(n,m)));

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int N1 = nums1.size();
        int N2 = nums2.size();
        if (N1 < N2) return findMedianSortedArrays(nums2, nums1); // Make sure A2 is the shorter one.

        int lo = 0, hi = N2 * 2;
        while (lo <= hi) {
            int mid2 = (lo + hi) / 2;   // Try Cut 2 
            int mid1 = N1 + N2 - mid2;  // Calculate Cut 1 accordingly
            
            double L1 = (mid1 == 0) ? INT_MIN : nums1[(mid1-1)/2]; // Get L1, R1, L2, R2 respectively
            double L2 = (mid2 == 0) ? INT_MIN : nums2[(mid2-1)/2];
            double R1 = (mid1 == N1 * 2) ? INT_MAX : nums1[(mid1)/2];
            double R2 = (mid2 == N2 * 2) ? INT_MAX : nums2[(mid2)/2];


            if (L1 > R2) lo = mid2 + 1; // A1's lower half is too big; need to move C1 left (C2 right)
            else if (L2 > R1) hi = mid2 - 1; // A2's lower half too big; need to move C2 left.
            else return (max(L1,L2) + min(R1, R2)) / 2; // Otherwise, that's the right cut.
            }
        return -1;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值