There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3] nums2 = [2] The median is 2.0
Example 2:
nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5
居然还是一道难度为困难的题,在我看来似乎没有,第一眼看到这题,就想到了,用一个容器存储所有的数据,然后分两种情况找中值(最复杂的);还是比较好想和理解的,所以我说没有困难难度,但看讨论区里,都是O(1)空间复杂度,O(log(min(m,n)))时间复杂度。。。
先贴自己写的复杂代码:
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
double res=0.0;
int len1=nums1.size();
int len2=nums2.size();
vector<int>tmp;
int i=0,j=0;
while(i<len1&&j<len2){
if(nums1[i]<nums2[j])
tmp.push_back(nums1[i++]);
else
tmp.push_back(nums2[j++]);
}
while(i<len1)
tmp.push_back(nums1[i++]);
while(j<len2)
tmp.push_back(nums2[j++]);
int mid=(len1+len2)/2;
if((len1+len2)%2==0){
res=(double(tmp[mid])+double(tmp[mid-1]))/2;
}
else{
res=double(tmp[mid]);
}
return res;
}
};
看了下讨论区的代码,其实就是不用空间存储,然后用二分法找到中值,所以才是O(log(min(n,m)));
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int N1 = nums1.size();
int N2 = nums2.size();
if (N1 < N2) return findMedianSortedArrays(nums2, nums1); // Make sure A2 is the shorter one.
int lo = 0, hi = N2 * 2;
while (lo <= hi) {
int mid2 = (lo + hi) / 2; // Try Cut 2
int mid1 = N1 + N2 - mid2; // Calculate Cut 1 accordingly
double L1 = (mid1 == 0) ? INT_MIN : nums1[(mid1-1)/2]; // Get L1, R1, L2, R2 respectively
double L2 = (mid2 == 0) ? INT_MIN : nums2[(mid2-1)/2];
double R1 = (mid1 == N1 * 2) ? INT_MAX : nums1[(mid1)/2];
double R2 = (mid2 == N2 * 2) ? INT_MAX : nums2[(mid2)/2];
if (L1 > R2) lo = mid2 + 1; // A1's lower half is too big; need to move C1 left (C2 right)
else if (L2 > R1) hi = mid2 - 1; // A2's lower half too big; need to move C2 left.
else return (max(L1,L2) + min(R1, R2)) / 2; // Otherwise, that's the right cut.
}
return -1;
}
};