1021. Deepest Root (25)

本文介绍了一个使用深度优先搜索算法来寻找具有最大深度的根节点的问题。通过递归方式遍历图结构,并记录每个节点所能达到的最大深度,最终找出具有最深深度的根节点。该算法首先输入节点数量及边的关系,然后进行深度优先搜索计算各节点的深度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:1021. Deepest Root (25)

#include <iostream>
#include <vector>
#include <algorithm>
#define Inf 9999999
using namespace std;
int n,k,curmaxdep,maxdep;
vector<int> parents;
vector<vector<int>> v;
vector<int> rt;
bool visit[10004];
void dfs(int r,int dep)
{
    curmaxdep=max(curmaxdep,dep);
    visit[r]=1;
    for(auto x:v[r])
    {
        if(!visit[x]) dfs(x,dep+1);
    }
    visit[r]=0;
}
int find(int x)
{
    return parents[x]==x?x:parents[x]=find(parents[x]);
}
int main()
{
    cin>>n;
    v.resize(n+1);
    parents.resize(n+1);
    rt.resize(n+1);
    for(int i=1;i<=n;++i) parents[i]=i;
    for(int i=1;i<=n-1;++i)
    {
        int u,w;
        cin>>u>>w;
        v[u].push_back(w);
        v[w].push_back(u);
        int L1=find(u),L2=find(w);
        if(L1!=L2) parents[L1]=L2;
    }
    for(int i=1;i<=n;++i)
    {
        if(parents[i]==i) ++k;
    }
    if(k>1) cout<<"Error: "<<k<<" components";
    else
    {
        for(int i=1;i<=n;++i)
        {
            curmaxdep=0;
            dfs(i,0);
            maxdep=max(maxdep,curmaxdep);
            rt[i]=curmaxdep;
        }
        for(int i=1;i<=n;++i) if(maxdep==rt[i]) cout<<i<<endl;
    }
    return 0;
}
# -*- coding: utf-8 -*- '''请在Begin-End之间补充代码, 完成BinaryTree类''' class BinaryTree: # 创建左右子树为空的根结点 def __init__(self, rootObj): self.key = rootObj # 成员key保存根结点数据项 self.leftChild = None # 成员leftChild初始化为空 self.rightChild = None # 成员rightChild初始化为空 # 把newNode插入到根的左子树 def insertLeft(self, newNode): if self.leftChild is None: self.leftChild = BinaryTree(newNode) # 左子树指向由newNode所生成的BinaryTree else: t = BinaryTree(newNode) # 创建一个BinaryTree类型的新结点t t.leftChild = self.leftChild # 新结点的左子树指向原来根的左子树 self.leftChild = t # 根结点的左子树指向结点t # 把newNode插入到根的右子树 def insertRight(self, newNode): if self.rightChild is None: # 右子树指向由newNode所生成的BinaryTree # ********** Begin ********** # self.rightChild = BinaryTree(newNode) # ********** End ********** # else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t # ********** End ********** # # 取得右子树,返回值是一个BinaryTree类型的对象 def getRightChild(self): # ********** Begin ********** # return self.rightChild # ********** End ********** # # 取得左子树 def getLeftChild(self): # ********** Begin ********** # return self.leftChild # ********** End ********** # # 设置根结点的值 def setRootVal(self, obj): # 将根结点的值赋值为obj # ********** Begin ********** # self.key = obj # ********** End ********** # # 取得根结点的值 def getRootVal(self): # ********** Begin ********** # return self.key # ********** End ********** # # 主程序 input_str = input() nodes = input_str.split(',') # 创建根节点 root = BinaryTree(nodes[0]) # 插入左子树和右子树 if len(nodes) > 1: root.insertLeft(nodes[1]) if len(nodes) > 2: root.insertRight(nodes[2]) # 前三行输出:对创建的二叉树按编号顺序输出结点 print(root.getRootVal()) left_child = root.getLeftChild
03-18
### 补全BinaryTree类的方法 以下是基于提供的参考资料[^1][^2],补全 `BinaryTree` 类中缺失的代码实现: #### 方法说明 - **insertRight**: 将新节点插入作为当前节点的右子节点。如果已有右子节点,则将其降级为新节点的右子节点。 - **getRightChild**: 返回当前节点的右子树。 - **setRootVal**: 设置当前节点的值。 - **getRootVal**: 获取当前节点的值。 #### 完整代码实现 ```python class BinaryTree: def __init__(self, root_val): self.key = root_val self.left_child = None self.right_child = None def insert_left(self, new_node): if not isinstance(new_node, BinaryTree): # 确保传入的是BinaryTree对象 new_node = BinaryTree(new_node) if self.left_child is None: self.left_child = new_node else: t = BinaryTree(new_node.get_root_val()) t.left_child = self.left_child self.left_child = t def insert_right(self, new_node): if not isinstance(new_node, BinaryTree): # 确保传入的是BinaryTree对象 new_node = BinaryTree(new_node) if self.right_child is None: self.right_child = new_node else: t = BinaryTree(new_node.get_root_val()) # 创建新的右子节点 t.right_child = self.right_child # 原有的右子树成为新节点的右子树 self.right_child = t # 新节点替换原有右子节点位置 def get_left_child(self): return self.left_child def get_right_child(self): return self.right_child # 返回当前节点的右子树 def set_root_val(self, value): self.key = value # 更新当前节点的值 def get_root_val(self): return self.key # 返回当前节点的值 ``` --- ### 使用示例 以下是一个简单的测试案例,展示如何使用上述方法构建并操作二叉树: ```python # 初始化根节点 tree = BinaryTree('A') # 插入左子节点 tree.insert_left(BinaryTree('B')) # 插入右子节点 tree.insert_right(BinaryTree('C')) # 修改根节点的值 tree.set_root_val('Z') # 输出根节点的值 print(tree.get_root_val()) # 输出 'Z' # 访问右子节点 right_child = tree.get_right_child() if right_child: print(right_child.get_root_val()) # 输出 'C' else: print("No Right Child") # 继续向右子节点添加子节点 right_child.insert_right(BinaryTree('D')) deepest_right = right_child.get_right_child() if deepest_right: print(deepest_right.get_root_val()) # 输出 'D' else: print("No Deeper Right Child") ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值